Browse > Article
http://dx.doi.org/10.5657/KFAS.2022.0612

Characterization of the Novel Marine Bacterium Planococcus sp. 107-1T  

Kim, Dong-Gyun (Biotechnology Research Division, National Institute of Fisheries and Science)
Jung, Hyun-Kyoung (Biotechnology Research Division, National Institute of Fisheries and Science)
Kim, Young-Ok (Biotechnology Research Division, National Institute of Fisheries and Science)
Kong, Hee Jeong (Biotechnology Research Division, National Institute of Fisheries and Science)
Nam, Bo-Hye (Biotechnology Research Division, National Institute of Fisheries and Science)
Kim, Ju-Won (Biotechnology Research Division, National Institute of Fisheries and Science)
Kim, Young-Sam (Biotechnology Research Division, National Institute of Fisheries and Science)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.55, no.5, 2022 , pp. 612-624 More about this Journal
Abstract
A novel Gram-positive, motile, non-spore forming aerobic marine bacterium, designated 107-1T was isolated from tidal mud collected in Gyehwa-do, South Korea. Cells of strain 107-1T were short rod or coccoid, oxidase negative, catalase positive and grew at 10-40℃ (with optimum growth at 25-30℃). It utilized menaquinones MK-7 and 8 as its respiratory quinones and its major fatty acids were anteiso-C15:0 (37.9%), iso-C16:0 (14.9%), and iso-C14:0 (10.8%). Phylogenetic analysis based on 16S rRNA gene sequences revealed a distinct clade containing strain 107-1T and close species Planococcus ruber CW1T(98.52% sequence similarity), P. faecalis KCTC 33580T(97.67%), P. kocurii ATCC 43650T(97.48%), P. donghaensis DSM 22276T(97.47%), and P. halocryophilus DSM 24743T(97.37%). Strain 107-1T contains one circular chromosome (3,513,248bp in length) with G+C content of 44.6 mol%. Estimated ranges for genome to genome distance, average nucleotide identity, and average amino acid identity comparing strain 107-1T with close taxa were 20.3-34.8%, 77.9-86.9%, and 73.6-92.8%, respectively. Based on polyphasic analysis, strain 107-1T represents a novel species belonging to the genus Planococcus.
Keywords
Novel marine bacterium; Planococcus sp.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Reddy C, Beveridge TJ, Breznak JA and Marzluf G. 2007. Methods for General and Molecular Microbiology, 3rd Edition. American Society for Microbiology Press, Washington D.C., U.S.A., 364-365.
2 Rodriguez-R LM and Konstantinidis KT. 2014. Bypassing cultivation to identify bacterial species. Microbe Magazine 9, 111-118. https://doi.org/10.1128/MICROBE.9.111.1.   DOI
3 Sasser M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI technical note 101. Newark, MIDI inc., Newark, DE, U.S.A.
4 See-Too WS, Ee R, Madhaiyan M, Kwon SW, Tan JY, Lim YL, Convey P, Pearce D, Yin WF and Chan KG. 2017. Planococcus versutus sp. Nov., isolated from soil. Int J Syst Evol Microbiol 67, 944-950. https://doi.org/10.1099/ijsem.0.001721.   DOI
5 Taniguchi K, Nakamura A, Tsurubuchi K, O'Hara K and Sawai T. 2004. The role of histidine residues conserved in the putative ATP-binding region of macrolide 2'-phosphotransferase II. FEMS Microbiol Lett 232, 123-126. https://doi.org/10.1016/S0378-1097(03)00961-3.   DOI
6 Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H and Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16s rrna gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67, 1613-1617. https://doi.org/10.1099/ijsem.0.001755.   DOI
7 Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M and Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44, 6614-6624. https://doi.org/10.1093/nar/gkw569.   DOI
8 Weisburg WG, Barns SM, Pelletier DA and Lane DJ. 1991. 16s ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991.   DOI
9 Yoon JH, Kang SJ, Lee SY, Oh KH and Oh TK. 2010. Planococcussalinarum sp. Nov., isolated from a marine solar saltern, and emended description of the genus Planococcus. Int J Syst Evol Microbiol 60, 754-758. https://doi.org/10.1099/ijs.0.013136-0.   DOI
10 Yoon JH, Weiss N, Kang KH, Oh TK, Park YH. 2003. Planococcus maritimus sp. Nov., isolated from sea water of a tidal flat in Korea. Int J Sys Evol Microbiol 53, 2013-2017. https://doi.org/10.1099/ijs.0.02557-0.   DOI
11 Wang X, Wang Z, Zhao X, Huang X, Zhou Y and Li WJ. 2017. Planococcus ruber sp. Nov., isolated from a polluted farmland soil sample. Int J Syst Evol Microbiol 67, 2549-2554. https://doi.org/10.1099/ijsem.0.001960.   DOI
12 Kautsar SA, Blin K, Shaw S, Navarro-Munoz JC, Terlouw BR, Hooft van der JJJ, Santen vna JA, Tracanna V, Duran HGS, Andreu VP, Selem-Mojica N, Alanjary M, Robinson SL, Lund G, Epstein SC, Sisto AC, Charkoudian LK, Collemare J, Linington RG, Weber T and Medema MH. 2020. MIBiG 2.0: a repository for biosynthetic gene clusters of known function, Nucleic Acids Res 48, 454-458. https://doi.org/10.1093/nar/gkz882.   DOI
13 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/97/NT. Nucleic Acids Symp Ser 41, 95-98.
14 Helfrich EJ, Lin GM, Voigt CA and Clardy J. 2019. Bacterial terpene biosynthesis: Challenges and opportunities for pathway engineering.Beilstein J Org Chem 15, 2889-2906. https://doi.org/10.3762/bjoc.15.283.   DOI
15 Jimenez C. 2018. Marine natural products in medicinal chemistry. ACS Med Chem Lett 9, 959-961. https://doi.org/10.1021/acsmedchemlett.8b00368.   DOI
16 Komagata K and Suzuki KI. 1988. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161-207. https://doi.org/10.1016/S0580-9517(08)70410-0.   DOI
17 Lee I, Kim YO, Park SC and Chun J. 2016. Orthoani: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66, 1100-1103. https://doi.org/10.1099/ijsem.0.000760.   DOI
18 Taberman H, Parkkinen T and Rouvinen J. 2016. Structural and functional features of the NAD(p) dependent Gfo/Idh/MocA protein family oxidoreductases. Protein Sci 25, 778-786. https://doi.org/10.1002/pro.2877.   DOI
19 van Hao M and Komagata K. 1985. A new species of Planococcus, P. kocurii isolated from fish, frozen foods, and fish curing brine. J Gen Appl Microbiol 31, 441-455. https://doi.org/10.2323/jgam.31.441.   DOI
20 Annous BA, Becker LA, Bayles DO, Labeda DP and Wilkinson BJ. 1997. Critical role of anteiso-c15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63, 3887-3894. https://doi.org/10.1128/aem.63.10.3887-3894.1997.   DOI
21 Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y and Wishart DS. 2016. Phaster: A better, faster version of the phast phage search tool. Nucleic Acids Res 44, W16-W21. https://doi.org/10.1093/nar/gkw387.   DOI
22 Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, Van Wezel GP, Medema MH and Weber T. 2021. AntiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res 49, W29-W35. https://doi.org/10.1093/nar/gkab335.   DOI
23 Auch AF, von Jan M, Klenk HP and Goker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2, 117-134. https://doi.org/10.4056/sigs.531120.   DOI
24 Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM and Kubal M. 2008. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75.   DOI
25 Bhushan A, Peters EE and Piel J. 2017. Entotheonella bacteria as source of sponge-derived natural products: Opportunities for biotechnological production. Prog Mol Subcell Biol 55, 291-314. https://doi.org/10.1007/978-3-319-51284-6_9.   DOI
26 Ebrahimipour G, Gilavand F, Karkhane M, Kavyanifard A, Teymouri M and Marzban A. 2014. Bioemulsification activity assessment of an indigenous strain of halotolerant Planococcus and partial characterization of produced biosurfactants. Int J Envioron Sci Technol 11, 1379-1386. https://doi.org/10.1007/s13762-014-0548-5.   DOI
27 Bernardet JF, Nakagawa Y, Holmes B and for the Subcommittee on the taxonomy of Flavobacterium and Cytophagalike bacteria of the International Committee on Systematics of Prokaryotes. 2002. Proposed minimal standards for describing new taxa of the family flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049-1070. https://doi.org/10.1099/00207713-52-3-1049.   DOI
28 Choi JH, Im WT, Liu QM, Yoo JS, Shin JH, Rhee SK and Roh DH. 2007. Planococcus donghaensis sp. Nov., a starchdegrading bacterium isolated from the East Sea, South Korea. Int J Syst Evol Microbiol 57, 2645-2650. https://doi.org/10.1099/ijs.0.65036-0.   DOI
29 Edgar RC. 2004. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792-1797. https://doi.org/10.1093/nar/gkh340.   DOI
30 Diomande SE, Nguyen-The C, Guinebretiere MH, Broussolle V and Brillard J. 2015. Role of fatty acids in Bacillus environmental adaptation. Front Microbiol 6, 813. https://doi.org/10.3389/fmicb.2015.00813.   DOI
31 Engelhardt M, Daly K, Swannell R and Head IM. 2001. Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. Nov. J Appl Microbiol 90, 237-247. https://doi.org/10.1046/j.1365-2672.2001.01241.x.   DOI
32 Fortier LC and Sekulovic O. 2013. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4, 354-365. https://doi.org/10.4161/viru.24498.   DOI
33 Majumdar S, Priyadarshinee R, Kumar A, Mandal T and Mandal DD. 2019. Exploring Planococcus sp. TRC1, a bacterial isolate, for carotenoid pigment production and detoxification of paper mill effluent in immobilized fluidized bed reactor. J Clean Prod 211, 1389-1402. https://doi.org/10.1016/j.jclepro.2018.11.157.   DOI
34 Kim JH, Kang HJ, Yu BJ, Kim SC and Lee PC. 2015. Planococcus faecalis sp. Nov., a carotenoid-producing species isolated from stools of antarctic penguins. Int J Syst Evol Microbiol 65, 3373-3378. https://doi.org/10.1099/ijsem.0.000423.   DOI
35 Konstantinidis KT and Tiedje JM. 2005. Towards a genomebased taxonomy for prokaryotes. J Bacteriol 187, 6258-6264. https://doi.org/10.1128/JB.187.18.6258-6264.2005.   DOI
36 Kumar S, Stecher G and Tamura K. 2016. Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870-1874. https://doi.org/10.1093/molbev/msw054.   DOI
37 Li YX, Wang NN, Zhou YX, Lin CG, Wu JS, Chen XQ, Chen GJ and Du Z. 2021. Planococcus maritimus ml1206 isolated from wild oysters enhances the survival of Caenorhabditis elegans against Vibrio anguillarum. Mar Drugs 19, 150. https://doi.org/10.3390/md19030150.   DOI
38 Ludwig W, Schleifer KH and Whitman WB. 2011. Bergey's manual of systematic bacteriology: The firmicutes. Springer, New York, NY, U.S.A.
39 Meier-Kolthoff JP, Auch AF, Klenk HP and Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14, 60. https://doi.org/10.1186/1471-2105-14-60.   DOI
40 Kocur M, Zdena P, Hodgkiss W and Martinec T. 1970. The taxonomic status of the genus Planococcus Migula 1894. Int J Syst Evol Microbiol 20, 241-248. https://doi.org/10.1099/00207713-20-3-241.   DOI
41 Montaser R and Luesch H. 2011. Marine natural products: A new wave of drugs?. Future Med Chem 3, 1475-1489. https://doi.org/10.4155/fmc.11.118.   DOI
42 Menouni R, Hutinet G, Petit MA and Ansaldi M. 2015. Bacterial genome remodeling through bacteriophage recombination. FEMS Microbiol Lett 362, 1-10. https://doi.org/10.1093/femsle/fnu022.   DOI
43 Minnikin D, O'donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A and Parlett J. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233-241. https://doi.org/10.1016/0167-7012(84)90018-6.   DOI
44 Moghaddam JA, Jautzus T, Alanjary M and Beemelmanns C. 2021. Recent highlights of biosynthetic studies on marine natural products. Org Biomol Chem 19, 123-140. https://doi.org/10.1039/D0OB01677B.   DOI
45 Zhao Y, Wu J, Yang J, Sun S, Xiao J and Yu J. 2012. PGAP: Pan-genomes analysis pipeline. Bioinformatics 28, 416-418. https://doi.org/10.1093/bioinformatics/btr655.   DOI
46 Moyo AC, Dufosse L, Giuffrida D, van Zyl LJ and Trindade M. 2022. Structure and biosynthesis of carotenoids produced by a novel Planococcus sp. isolated from south africa. Microb Cell Fact 21, 43. https://doi.org/10.1186/s12934-022-01752-1.   DOI
47 Mykytczuk N, Foote SJ, Omelon CR, Southam G, Greer CW and Whyte LG. 2013. Bacterial growth at -15℃; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7, 1211-1226. https://doi.org/10.1038/ismej.2013.8.   DOI
48 Mykytczuk NC, Wilhelm RC and Whyte LG. 2012. Planococcus halocryophilus sp. Nov., an extreme sub-zero species from high arctic permafrost. Int J Syst Evol Microbiol 62, 1937-1944. https://doi.org/10.1099/ijs.0.035782-0.   DOI