Browse > Article
http://dx.doi.org/10.5657/KFAS.2022.0524

Taurine-enriched Rotifers Improve the Growth and Swim Bladder Inflation of Yellowtail Seriola quinqueradiata Larvae  

Kim, Jae-Hoon (Jeju Fisheries Research Institute, National Institute of Fisheries Science)
Park, Jin Woo (Jeju Fisheries Research Institute, National Institute of Fisheries Science)
Cho, Jeong-Hyeon (Jeju Fisheries Research Institute, National Institute of Fisheries Science)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.55, no.5, 2022 , pp. 524-532 More about this Journal
Abstract
We investigated the effects of taurine-enriched rotifers on larval growth and swim bladder inflation of yellowtail Seriola quinqueradiata. Rotifers were enriched with a commercial taurine supplement at two levels (0 and 800 mg/L). The larvae (initial notochord length=3.98±0.24 mm) were fed the enriched rotifers in triplicate from two days post-hatch for five days. The average taurine contents of the taurine non-enriched and enriched rotifers were 0.35±0.01 and 4.77±0.05 mg/g dry matter, respectively. The weight gain and specific growth rate of the fish fed enriched rotifers with the taurine supplement at 800 mg/L significantly improved compared with those of fish fed rotifers without taurine enrichment (P<0.05). The swim bladder inflation rate of larvae fed taurine enriched rotifers significantly (P<0.05). The results of the present study indicate that yellowtail larvae benefit from taurine concentrations compared with those typically reported to feed on non-taurine supplemented rotifers. Furthermore, taurine-enriched food for fish larval effectively improved the growth performance and swim bladder inflation of yellowtail larvae.
Keywords
Yellowtail; Taurine enrichment; Growth performance; Swim bladder;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bavi Z, Zakeri M, Mousavi SM and Yavari V. 2022. Effects of dietary taurine on growth, body composition, blood parameters, and enzyme activities of juvenile sterlet (Acipenser ruthenus). Aquac Nutr 2022, 1713687. https://doi.org/10.1155/2022/1713687.   DOI
2 Takeuchi T. 2009. Nutritional studies on improvement of health and quality of marine aquatic animals larvae. Nippon Suisan Gakkaishi 75, 623-635. https://doi.org/10.2331/suisan.75.623.   DOI
3 Tanaka Y, Kumon K, Nishi A, Eba T, Nikaido H and Shiozawa S. 2009. Status of the sinking of hatchery-reared larval Pacific bluefin tuna on the bottom of the mass culture tank with different aeration design. Aquac Sci 57, 587-593. https://doi.org/10.11233/aquaculturesci.57.587.   DOI
4 Urbich AV, Furuya WM, Michelato M, Panaczevicz PAP, da Cruz TP, Furuya LB and Furuya VRB. 2022. Synergistic effects of dietary methionine and taurine on growth performance, blood parameters, expression in hepatic sulfur-metabolism genes, and flesh quality of large Nile tilapia. Anim Feed Sci Technol 288, 115291. https://doi.org/10.1016/j.anifeedsci.2022.115291.   DOI
5 Van der Meeren T, Olsen RE, Hamre K and Fyhn HJ. 2008. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274, 375-397. https://doi.org/10.1016/j.aquaculture.2007.11.041.   DOI
6 Chen JN, Takeuchi T, Takahashi T, Tomoda T, Koiso M and Kuwada H. 2004. Effect of rotifers enriched with taurine on growth and survival activity of red sea bream Pagrus major larvae. Nippon Suisan Gakkaishi 70, 542-547. https://doi.org/10.2331/suisan.70.542.   DOI
7 Conceicao L, Aragao C and Ronnestad I. 2011. Proteins. In: Larval Fish Nutrition. Holt J, ed. John Wiley and Sons Inc., West Sussex, U.K., 83-116.
8 Dong CM, Lee MN, Kim EM, Park JY, Kim GD and Noh JK. 2020. Development and genetic diversity analysis of microsatellite markers using next-generation sequencing in Seriola quinqueradiata. J Life Sci 30, 291-297. https://doi.org/10.5352/JLS.2020.30.3.291.   DOI
9 Wacker A and Martin-Creuzburg D. 2012. Biochemical nutrient requirements of the rotifer Brachionus calyciflorus: co-limitation by sterols and amino acids. Funct Ecol 26, 1135-1143. https://doi.org/10.1111/j.1365-2435.2012.02047.x.   DOI
10 Wijayasinghe YS, Tyagi A and Poddar NK. 2017. Regulation of cell volume by osmolytes. In: Cellular Osmolytes. Rajendrakumar SL and Dar T, eds. Springer, Singapore, 195-228. https://doi.org/10.1007/978-981-10-3707-8_9.   DOI
11 Gao YS, Chen YK, Wang QJ, Wang GQ, Lin LL, Chen XM and Zhang DM. 2021. L-carnitine can improve the population growth and anti-stress ability of rotifer (Brachionus rotundiformis) under ammonia stress. Aquac Rep 20, 100622. https://doi.org/10.1016/j.aqrep.2021.100622.   DOI
12 Hamre K. 2016. Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture 450, 136-142. https://doi.org/10.1016/j.aquaculture.2015.07.016.   DOI
13 Woolley LD and Qin JG. 2010. Swimbladder inflation and its implication to the culture of marine finfish larvae. Rev Aquac 2, 181-190. https://doi.org/10.1111/j.1753-5131.2010.01035.x.   DOI
14 Higuchi K, Gen K, Izumida D, Kazeto Y, Hotta T, Takashi T, Aono H and Soyano K. 2017. Changes in plasma steroid levels and gene expression of pituitary gonadotropins, testicular steroidogenesis-related proteins and insulin-like growth factors during spermatogenesis of the yellowtail Seriola quinqueradiata. Fish Sci 83, 35-46. https://doi.org/10.1007/s12562-016-1035-3.   DOI
15 Katagiri R, Sasaki T, Diaz A, Ando M, Margulies D, Scholey VP and Sawada Y. 2017. Effect of taurine enrichment in rotifer (Brachionus sp.) on growth of larvae of Pacific bluefin tuna Thunnus orientalis (Temminck & Schlegel) and yellowfin tuna T. albacares (Temminck & Schlegel). Aquac Res 48, 3013-3031. https://doi.org/10.1111/are.13134.   DOI
16 Kurata M, Ishibashi Y, Takii K, Kumai H, Miyashita S and Sawada Y. 2014. Influence of initial swimbladder inflation failure on survival of Pacific bluefin tuna, Thunnus orientalis (T emminck and Schlegel), larvae. Aquac Res 45, 882-892. https://doi.org/10.1111/are.12027.   DOI
17 Matsunari H, Hamada K, Mushiake K and Takeuchi T. 2006. Effects of taurine levels in broodstock diet on reproductive performance of yellowtail Seriola quinqueradiata. Fish Sci 72, 955-960. https://doi.org/10.1111/j.1444-2906.2006.01243.x.   DOI
18 Andersen SM, Waagbo R and Espe M. 2016. Functional amino acids in fish health and welfare. Front Biosci 8, 143-169. https://doi.org/10.2741/757.   DOI
19 Yokoyama M, Takeuchi T, Park GS and Nakazoe J. 2001. Hepatic cysteinesulphinate decarboxylase activity in fish. Aquac Res 32, 216-220. https://doi.org/10.1046/j.1355-557x.2001.00017.x.   DOI
20 Yoshimatsu T and Hossain MA. 2014. Recent advances in the high-density rotifer culture in Japan. Aquac Int 22, 1587-1603. https://doi.org/10.1007/s10499-014-9767-5.   DOI
21 Biasato I, Chemello G, Caimi C, Oddon SB, Capucchio MT, Colombino E and Gasco L. 2022. Taurine supplementation in plant-based diets for juvenile rainbow trout (Oncorhynchus mykiss): Effects on growth performance, whole body composition, and histomorphological features. Anim Feed Sci Technol 289, 115314. https://doi.org/10.1016/j.anifeedsci.2022.115314.   DOI
22 Cahu C and Infante JZ. 2001. Substitution of live food by formulated diet in marine fish larvae. Aquaculture 200, 161-180. https://doi.org/10.1016/S0044-8486(01)00699-8.   DOI
23 Matsunari H, Arai D, Koiso M, Kuwada H, Takahashi T and Takeuchi T. 2005. Effect of feeding rotifers enriched with taurine on growth performance and body composition of Pacific cod larvae Gadus macrocephalus. Aquac Sci 53, 297-304. https://doi.org/10.11233/aquaculturesci1953.53.297.   DOI
24 Maehre HK, Hamre K and Elvevoll EO. 2012. Nutrient evaluation of rotifers and zooplankton: feed for marine fish larvae. Aquac Nutr 19, 301-311. https://doi.org/10.1111/j.1365-2095.2012.00960.x.   DOI
25 Kolkovski S and Sakakura Y. 2007. Yellowtail kingfish cultureopportunities and problems. World Aquac 38, 44-48.
26 Lee SK, Kim YU, Myoung JG and Kim JM. 2000. Dictionary of Korean Fish Names. Junginsa Publication Co., Seoul, Korea, 1-222.
27 Nguyen HP, Khaoian P, Fukada H, Suzuki N and Masumoto T. 2015. Feeding fermented soybean meal diet supplemented with taurine to yellowtail Seriola quinqueradiata affects growth performance and lipid digestion. Aquac Res 46, 1101-1110. https://doi.org/10.1111/are.12267.   DOI
28 Rotman F, Stuart K and Drawbridge M. 2017. Effects of taurine supplementation in live feeds on larval rearing performance of California yellowtail Seriola lalandi and white seabassAtractoscion nobilis. Aquac Res 48, 1232-1239. https://doi.org/10.1111/are.12964.   DOI
29 Sawada Y, Mizushima Y, Sera T Honryo T, Kurata M and Agawa Y. 2021. Requirement of access to an air-water interface for initial swim bladder inflation and ontogenetic and daynight change of body-specific gravity in Japanese amberjack, Seriola quinqueradiata, larvae. Aquac Res 52, 6485- 6496. https://doi.org/10.1111/are.15516.   DOI
30 Takagi S, Murata H, Goto T, Endo M, Yamashita H and Ukawa M. 2008. Taurine is an essential nutrient for yellowtail Seriola quinqueradiata fed non-fish meal diets based on soy protein concentrate. Aquaculture 280, 198-205. https://doi.org/10.1016/j.aquaculture.2008.05.012.   DOI
31 Matsunari H, Hashimoto H, Iwasaki T, Oda K, Masuda Y, Imaizumi H, Teruya K, Furuita H, Yamamoto T, Hamada K and Mushiake K. 2013. Effect of feeding rotifers enriched with taurine on the growth and survival of larval amberjack Seriola dumerili. Fish Sci 79, 815-821. https://doi.org/10.1007/s12562-013-0657-y.   DOI
32 Maehre A, Ronnestad I, Fyhn HJ, Berg L and Waagbo R. 2000. Water-soluble vitamins in natural plankton (copepods) during two consecutive spring blooms compared to vitamins in Artemia franciscana nauplii and metanauplii. Mar Biol 136, 765-772. https://doi.org/10.1007/s002270000280.   DOI
33 Nakagawa T, Matsunari H, Yokota T, Tanaka H, Funamoto T, Ito S, Yamamoto T and Unuma T. 2019. Effects of taurineenriched early live food (rotifer and Artemia nauplii) on the survival and growth of walleye pollock larvae. Aquac Sci 67, 157-170. https://doi.org/10.11233/aquaculturesci.67.157.   DOI
34 Nakagawa Y, Kurata M, Sawada Y, Sakamoto W and Miyashita S. 2011. Enhancement of survival rate of Pacific bluefin tuna (Thunnus orientalis) larvae by aeration control in rearing tank. Aquat Living Resour 24, 403-410. https://doi.org/10.1051/alr/2011150.   DOI
35 Sicuro B and Luzzana U. 2016. The state of Seriola spp. other than yellowtail (S. quinqueradiata) farming in the world. Rev Fish Sci Aquac 24, 314-325. https://doi.org/10.1080/23308249.2016.1187583.   DOI
36 Pinto W, Figueira L, Ribeiro L, Yufera M, Dinis MT and Aragao C. 2010. Dietary taurine supplementation enhances metamorphosis and growth potential of Solea senegalensis larvae. Aquaculture 309, 159-164. https://doi.org/10.1016/j.aquaculture.2010.08.031.   DOI
37 Ripps H and Shen W. 2012. Review: Taurine: a "very essential" amino acid. Mol Vis 18, 2673-2686.
38 Salze G, Craig SR, Smith BH, Smith EP and McLean E. 2011. Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation. J Fish Biol 78, 1470-1491. https://doi.org/10.1111/j.1095-8649.2011.02954.x.   DOI
39 Salze GP and Davis DA. 2015. Taurine: a critical nutrient for future fish feeds. Aquaculture 437, 215-229. https://doi.org/10.1016/j.aquaculture.2014.12.006.   DOI
40 Schreck CB and Moyle PB. 1990. Methods for Fish Biology. American Fisheries Society, Bethesda, MD, U.S.A., 363-387.
41 Takagi S, Murata H, Goto T, Ichiki T, Munasinghe DM, Endo M and Kuramoto T. 2005. The green liver syndrome is caused by taurine deficiency in yellowtail, Seriola quinqueradiata fed diets without fishmeal. Aquac Sci 53, 279-290. https://doi.org/10.11233/aquaculturesci1953.53.279.   DOI
42 Takahashi T, Amano T and Takeuchi T. 2005. Establishment of direct enrichment methods of taurine to rotifer. Aquac Sci 53, 121-126. https://doi.org/10.11233/aquaculturesci1953.53.121.   DOI
43 Cho JH, Kim JH and Park JW. 2022. A preliminary study on the effects of taurine-enriched rotifers on the growth and survival of the small yellow croaker Larimichthys polyactis larvae. Animals 12, 1403. https://doi.org/10.3390/ani12111403.   DOI
44 Corriero A, Wylie MJ, Nyuji M, Zupa R and Mylonas CC. 2021. Reproduction of greater amberjack (Seriola dumerili) and other members of the family Carangidae. Rev Aquac 13, 1781-1815. https://doi.org/10.1111/raq.12544.   DOI
45 Dabrowski K. 1986. Ontogenetical aspects of nutritional requirements in fish. Comp Biochem Physiol 85, 639-655. https://doi.org/10.1016/0300-9629(86)90272-0.   DOI
46 FAO (Food and Agriculture Organization of the United Nations). 2019. Statistic Database for Fishery and Aquaculture. Retrieved from http://fao.org/fishery/statistics-query/en/capture/capture_quantity on Mar 21, 2022.
47 Takashi T, Kohno H, Sakamoto W, Miyashita S, Murata O and Sawada Y. 2006. Diel and ontogenetic body density change in Pacific bluefin tuna, Thunnus orientalis (Temminck and Schlegel), larvae. Aquac Res 37, 1172-1179. https://doi.org/10.1111/j.1365-2109.2006.01544.x.   DOI
48 Chen JN, Takeuchi T, Takahashi T, Tomoda T, Koiso M and Kuwada H. 2005. Effect of rotifers enriched with taurine on growth in larvae of Japanese flounder Paralichthys olicaceus. Nippon Suisan Gakkaishi 71, 342-347. https://doi.org/10.2331/suisan.71.342.   DOI
49 Goto T, Matsumoto T, Murakami S, Takagi S and Hasumi F. 2003. Conversion of cysteate into taurine in liver of fish. Fish Sci 69, 216-218. https://doi.org/10.1046/j.1444-2906.2003.00610.x.   DOI
50 Fu Z, Yang R, Zhou S, Ma Z and Zhang T. 2021. Effects of rotifers enriched with different enhancement products on larval performance and jaw deformity of golden pompano larvae Trachinotus ovatus (Linnaeus, 1758). Front Mar Sci 7, 626071. https://doi.org/10.3389/fmars.2020.626071.   DOI
51 Goto T, Tiba K, Sakurada Y and Takagi S. 2001. Determination of hepatic cysteinesulfinate decarboxylase activity in fish by means of OPA-prelabeling and reverse-phase high-performance liquid chromatographic separation. Fish Sci 67, 553-555. https://doi.org/10.1046/j.1444-2906.2001.00271.x.   DOI
52 Hamre K, Srivastava A, Ronnestad I, Mangor-Jensen A and Stoss J. 2008. Several micronutrients in the rotifer Brachionus sp. May not fulfill the nutritional requirements of marine fish larvae. Aquac Nutr 14, 51-60. https://doi.org/10.1111/j.1365-2095.2007.00504.x.   DOI
53 Hawkyard M, Laurel B and Langdon C. 2014. Rotifers enriched with taurine by microparticulate and dissolved enrichment methods influence the growth and metamorphic development of northern rock sole (Lepidopsetta polyxystra) larvae. Aquaculture 424-425, 151-157. https://doi.org/10.1016/j.aquaculture.2013.12.035.   DOI
54 Higuchi K, Yoshida K, Gen K, Matsunari H, Takashi T, Mushiake K and Soyano K. 2018. Effect of long-term food restriction on reproductive performances in female yellowtail, Seriola quinqueradiata. Aquaculture 486 224-231. https://doi.org/10.1016/j.aquaculture.2017.12.032.   DOI
55 Hopkins KD. 1992. Reporting fish growth: A review of the basics. J World Aquac Soc 23, 173-179. https://doi.org/10.1111/j.1749-7345.1992.tb00766.x.   DOI
56 Kim YS, Sasaki T, Awa M, Inomata M, Honryo T, Agawa Y, Ando M and Sawada Y. 2016. Effect of dietary taurine enhancement on growth and development in red sea bream Pagrus major larvae. Aquac Res 47, 1168-1179. https://doi.org/10.1111/are.12573.   DOI