Browse > Article
http://dx.doi.org/10.5657/KFAS.2022.0449

Oxygen Consumption of Sea Squirt Halocynthia roretzi Depending on the Water Temperature and Body Size  

Kang, Pil Jun (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology)
Lee, Geun Su (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology)
Oh, Sung-Yong (Marine Bio-Resources Research Unit, Korea Institute of Ocean Science & Technology)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.55, no.4, 2022 , pp. 449-454 More about this Journal
Abstract
The oxygen consumption rate (OCR) based on the water temperature and body size of the sea squirt Halocynthia roretzi was examined to provide quantitative information about the metabolic response of the species. OCRs were measured using a closed flow-through respirometer at four different water temperatures (10, 15, 20 and 25℃) and two different body sizes (21.4±1.1 g and 150.5±1.3 g, wet weight) with triplicates of each treatment. OCR increased as water temperature increased at both body sizes, but decreased as body size increased regardless of the water temperature (P<0.001). The effect of body size evaluated as a power function ranged from 0.8055 to 0.8884. The highest Q10 values in the small and large size groups ranged from 15 to 20℃ and 20 to 25℃, respectively. The metabolic daily energy loss rate via respiration at all tested temperatures ranged from 56.2 to 106.1 J g-1 d-1 in the small-size group and from 44.5 to 92.0 J g-1 d-1 in the large-size group. Our results indicate that the metabolic response of H. roretzi highly depends on fluctuating water temperature at a given life stage.
Keywords
Halocynthia roretzi; Oxygen consumption; Physiology; Temperature; Body mass;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Bayne BL and Newell RC. 1983. Physiological Energetics of Marine Mollusks. Academic Press, New York, NY, U.S.A., 407-515.
2 Fisher TR. 1976. Oxygen uptake of the solitary tunicate Styela plicata. Biol Bull 151, 297-305. https://doi.org/10.2307/1540662.   DOI
3 Griffiths CL and Griffiths RJ. 1987. Bivalvia. In: Animal Energetics 2. Pandian TL and Vernberg EJ, eds. Academic Press, New York, NY, U.S.A., 1-88.
4 Gorsky G, Palazzoli I and Fenaux R. 1987. Influence of temperature changes on oxygen uptake and ammonia and phosphate excretion, in relation to body size and weight, in Oikopleura dioica (Appendicularia). Mar Biol 94, 191-201. https://doi.org/10.1007/BF00392931.   DOI
5 Na GH, Lee CS and Choi WJ. 1991. The effect of dissolved oxygen on the estival mass mortality of sea squirt, Halocynthia roretzi (Drasche). Bull Korean Fish Soc 24, 52-58.
6 Newell RIE and Bayne BL. 1980. Seasonal changes in the physiology, reproductive condition and carbohydrate content of the cockle Cardium (Cerastoderma) edule. Mar Biol 56, 11-19. https://doi.org/10.1007/BF00390589.   DOI
7 Oh SY, Jeong YK, Lee GS, Kang PJ and Park HM. 2020. Oxygen consumption and blood physiology of olive flounder Paralichthys olivaceus subjected to salinity changes. Korean J Fish Aquat Sci 53, 620-627. https://doi.org/10.5657/KFAS.2020.0620.   DOI
8 Perez-Robles J, Re AD, Giffard-Mena I and Diaz F. 2012. Interactive effects of salinity on oxygen consumption, ammonium excretion, osmoregulation and Na+/K+-ATPase expression in the bullseye puffer (Sphoeroides annulatus, Jenyns 1842). Aquac Res 43, 1372-1383. https://doi.org/10.1111/j.1365-2109.2011.02940.x.   DOI
9 Romo ZM, Re AD, Diaz F and Mena A. 2010. Physiological responses of pink abalone Haliotis corrugata (Gray, 1828) exposed to different combinations of temperature and salinity. Aquac Res 41, 953-960. https://doi.org/10.1111/j.1365-2109.2009.02377.x.   DOI
10 Scholnick DA. 1995. Sensitivity of metabolic rate growth and fecundity of tadpole shrimp Triops longicaudatus to environmental variation. Biol Bull 189, 22-28. https://doi.org/10.2307/1542197.   DOI
11 Shin YK, Choi NJ, Hur YB, Han HK, Park JH and Kim Y. 2007. Survival and physiological responses of the tunicate Halocynthia roretzi to salinity changes. J Aquaculture 20, 226-231.
12 Lee YJ, Wilberg MJ, Han E, Choi KS, Lee WC and Kang CK. 2020. Growth of the longline-cultured sea squirt Halocynthia roretzi in a temperate bay of Korea: Biochemical composition and physiological energetics. Aquaculture 516, 734526. https://doi.org/10.1016/j.aquaculture.2019.734526.   DOI
13 Jobling M. 1982. A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J Fish Biol 20, 501-516. https://doi.org/10.1111/j.1095-8649.1982.tb03951.x.   DOI
14 Gunasingh Masilamoni J, Nandakumar K, Jesudoss KS, Azariah J, Stapathy KK and Nair KVK. 2002. Influence of temperature on the physiological response of the bivalve Brachidontes striatulus and its significance in fouling control. Mar Environ Res 53, 51-63. https://doi.org/10.1016/S0141-1136(01)00109-X.   DOI
15 Jahromi ST and Barzkar N. 2018. Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int J Biol Macromol 120, 2147-2154. https://doi.org/10.1016/j.ijbiomac.2018.09.083.   DOI
16 Jiang AL, Guo JL, Cai WG and Wang CH. 2008. Oxygen consumption of the ascidian Styela clava in relation to body mass, temperature and salinity. Aquac Res 39, 1562-1568. https://doi.org/10.1111/j.1365-2109.2008.02040.x.   DOI
17 Kang KH and Hur JW. 2012. Effects of heavy metals on clearance and oxygen consumption rates of the sea squirt Halocynthia roretzi according to various body sizes. Korean J Environ Biol 30, 349-354. https://doi.org/10.11626/KJEB.2012.30.4.349.   DOI
18 Kang YQ. 2000. Warming trend of coastal waters of Korea during recent 60 years (1936-1995). Fish Aquat Sci 3, 173-179.
19 Kern P, Cramp RL and Franklin CE. 2014. Temperature and UV-B-insensitive performance in tadpoles of the ornate burrowing frog: an ephemeral pond specialist. J Exp Biol 217, 1246-1252. https://doi.org/10.1242/jeb.097006.   DOI
20 Kim YG. 1980. Ecological study on the transplantation of the sea squirt, Halocynthia roretzi (v. Drasche) to gogunsan Islands. Bull Korean Fish Soc 13, 57-64.
21 Shumuag SE. 1978. Respiration, pumping activity and heart rate in Ciona intesinalis exposed to fluctuating salinities. Mar Biol 48, 235-242. https://doi.org/10.1007/BF00397150.   DOI
22 Inanami O, Yamamori T, Shionoya H and Kuwabara M. 2001. Antioxidant activity of quinone-derivatives from freezedried powder of the Ascidians. In: The Biology of Ascidians. Sawada H, Yokosawa H and Lambert CC, eds. SpringerVerlag, Tokyo, Japan, 457-462.
23 Shumway SE and Koehn RK. 1982. Oxygen consumption in the American oyster Crassostrea virginica. Mar Ecol Prog Ser 9, 59-68. https://doi.org/10.3354/meps009059.   DOI
24 Sung KT, Hwang JD, Han IS, Go WJ, Suh YS and Lee JY. 2010. Characteristic for long-term trends of temperature in the Korean waters. J Korean Soc Mar Environ Saf 16, 353-360.
25 Thomas CW, Crear BJ and Hart PR. 2000. The effect of temperature on survival, growth, feeding and metabolic activity of the southern rock lobster, Jasus edwardsii. Aquaculture 185, 73-84. https://doi.org/10.1016/S0044-8486(99)00341-5.   DOI
26 Yoo SK, Kang H and Chang YH. 1990. Influence of water temperature on spawning induction, egg development and seed collection of sea squirt, Halocynthia roretzi. J Aquaculture 3, 79-88.
27 Velez C, Figueira E, Soares AMVM and Freitas R. 2016b. Native and introduced clams biochemical responses to salinity and pH changes. Sci Total Environ 566-567, 260-268. https://doi.org/10.1016/j.scitotenv.2016.05.019.   DOI
28 Wang WN, Wang AL, Liu Y, Xiu J, Liu ZB and Sun RY. 2006. Effects of temperature on growth, adenosine phosphates, ATPase and cellular defense response of juvenile shrimp Macrobrachium nipponense. Aquaculture 256, 624-630. https://doi.org/10.1016/j.aquaculture.2006.02.009.   DOI
29 Yin F, Sun P, Peng S, Tang B, Zhang D, Wang C, Mu C and Shi Z. 2013. The respiration, excretion and biochemical response of the juvenile common Chinese cuttlefish, Sepiella maindroni at different temperatures. Aquaculture 402-403, 127-132. https://doi.org/10.1016/j.aquaculture.2013.03.018.   DOI
30 Zeuthen E. 1953. Oxygen uptake and body size in organisms. Q Rev Biol 28, 1-12.   DOI
31 Zhang JH, Fang JG and Dong SL. 2000. Study on the ammonia excretion rate of four species ascidian. Mar Fish Res 21, 31-36.   DOI
32 Yoo SK, Lim HS and Lim DT. 1988. On the growth of the sea squirt (Halocynthia roretzi) from artificial seeds. J Aquaculture 1, 75-84.
33 Sukhotin AA, Lajus DL and Lesin PA. 2003. Influence of age and size on pumping activity and stress resistance on the marine bivalve Mytilus edulis L. J Exp Mar Biol Ecol 284, 129-144. https://doi.org/10.1016/S0022-0981(02)00497-5.   DOI
34 Velez C, Figueira E, Soares AMVM and Freitas R. 2016a. Combined effects of seawater acidification and salinity changes in Rudi- tapes philippinarum. Aquat Toxicol 176, 141-150. https://doi.org/10.1016/j.aquatox.2016.04.016.   DOI
35 Winter JE. 1978. A review on the knowledge of suspensionfeeding in lamellibranchiate bivalves, with special reference to artificial aquaculture system. Aquaculture 13, 1-33. https://doi.org/10.1016/0044-8486(78)90124-2.   DOI
36 Kang CK, Lee YJ, Han E, Park HY, Yun SG and Lee WC. 2015. Effects of temperature and body size on the physiological energetics of the stalked sea squirt Styela clava. J Exp Mar Biol Ecol 462, 105-112. https://doi.org/10.1016/j.jembe.2014.10.026.   DOI
37 Brett JR and Groves TDD. 1979. Physiological energetics. In: Bioenergetics and Growth. Fish Physiology. Vol. 8. Hoar WH, Randall DJ and Brett JR, eds. Academic Press, New York, NY, U.S.A., 279-352.
38 Gosling E. 2015. Marine Bivalve Molluscs, 2nd Edition. Wiley Blackwell, West Sussex, U.K.
39 Ikenoue H and Kafuku T. 1992. Sea squirt (Halocynthia roretzi). In: Modern Methods of Aquaculture in Japan. Elsevier, Tokyo, Japan, 217-223.
40 Jeong WG and Cho SM. 2013. Effect of water temperature and body weight on the filtration rate of sea squirt Halocynthia roretzi. Korean J Fish Aquat Sci 46, 813-818. https://doi.org/10.5657/KFAS.2013.0813.   DOI
41 Oh SY, Noh CH, Myoung JG and Jo JY. 2007. Effects of water temperature and body weight on oxygen consumption rate of black rockfish, Sebastes schlegeli. Korean J Ichthyol 19, 1-7.
42 Katsanevakis S, Stephanopoulou S, Miliou H, Moraitou-Apostolopoulou M and Verriopoulos G. 2005. Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Mar Biol 146, 725-732. https://doi.org/10.1007/s00227-004-1473-9.   DOI
43 Lambert G, Karney RC, Rhee WY and Carman MR. 2016. Wild and cultured edible tunicates: a review. Manag Biol Invasion 7, 59-66. http://dx.doi.org/10.3391/mbi.2016.7.1.08.   DOI
44 Newell RC, Johson LG and Kofoed LH. 1977. Adjustment of the components of energy balance in response to temperature change in Ostrea edulis. Oecologia 30, 97-110. https://doi.org/10.1007/BF00345414.   DOI
45 Saucedo PE, Ocampo LA, Monteforte M and Bervera H. 2004. Effect of temperature on oxygen consumption and ammonia excretion in the Calafia mother-of-peral oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture 229, 377-387. https://doi.org/10.1016/S0044-8486(03)00327-2.   DOI
46 Shin YK, Jun JC, Kim EO and Hur YB. 2011. Physiological changes and energy budget of the sea squirt Halocynthia roretzi from Tongyeong, south coast of Korea. Korean J Fish Aquat Sci 44, 366-371. https://doi.org/10.5657/KFAS.2011.0366.   DOI