Browse > Article
http://dx.doi.org/10.5657/KFAS.2020.0530

Effect of Different Rotifer Enrichment Products on Survival, Growth, and Fatty Acid Composition of Larval Pacific Cod Gadus macrocephalus  

Choi, Jin (Aquaculture Management Division, National Institute of Fisheries Science)
Han, Gyeong Sik (Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science)
Byun, Soon-Gyu (Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science)
Lim, Hyun Jeong (Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science)
Lee, Chang-Hwan (Department of Marine Seafood and Aquaculture Science, Gyeongsang National University)
Lee, Da-Yeon (Department of Marine Seafood and Aquaculture Science, Gyeongsang National University)
Kim, Hee Sung (Department of Marine Seafood and Aquaculture Science, Gyeongsang National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.53, no.4, 2020 , pp. 530-537 More about this Journal
Abstract
This study compared the survival rates, growth, and fatty acid content of larval Pacific cod Gadus macrocephalus fed with rotifers raised on different enrichment diets. We used four commercial rotifer enrichment products (one domestic, ER1, and three imported, ER2, ER3 and ER4). Twelve 200-L tanks were used, with three replicates per treatment. Larvae were fed rotifers 3 times daily at a rate of 5 rotifers/ml/feeding from 7 to 21 days post-hatch. At the end of the feeding trial, the survival rate and total length of larvae fed ER3 were greater than those of larvae fed ER1, ER2, or ER4. ER3 had the highest proportions of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and polyunsaturated acid (PUFA). Partially reflecting this composition, larvae fed ER3 had the highest proportions of DHA and PUFA. These results show a positive effect of rotifer DHA and PUFA proportions on the survival and growth rates of Pacific cod larvae.
Keywords
Rotifer; Larval pacific cod; Enrichment; Growth; Fatty acid composition;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Hamre K. 2016. Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture 450, 136-142. https://doi.org/10.1016/j.aquaculture.2015.07.016.   DOI
2 Harel M, Koven W, Lein I, Bar Y, Behrens P, Stubblefield J, Zohar Y and Place AR. 2002. Advanced DHA, EPA and ARA enrichment materials for marine aquaculture using single cell heterotrophs. Aquaculture 213, 347-362. https://doi.org/10.1016/S0044-8486(02)00047-9.   DOI
3 Heming TA, McInerney JE and Alderdice DF. 1982. Effect of temperature on initial feeding in alevins of shinook salmon Oncorhyncus tshawytscha. Can J Fish Aquat Sci 39, 1154-1562. https://doi.org/10.1139/f82-210.
4 Kanazawa A. 1997. Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish. Aquaculture 155, 131-137. https://doi.org/10.1016/S0044-8486(97)00123-3.   DOI
5 Kanazawa A. 2003. Nutrition of marine fish larvae. J Appl Aquacult 13, 103-143. https://doi.org/10.1300/J028v13n01_05.   DOI
6 Kim TJ, Park C, Lee S and Gwak W. 2007. Morphological development of eggs and larvae of the Pacific cod, Gadus macrocephalus. Korean J Ichthyol 19, 343-349.
7 Kobayashi T, Nagase T, Hino A, Takeuchi T., 2008. Effect of combination feeding of Nannochloropsis and freshwater Chlorella on the fatty acid composition of rotifer Brachionus plicatilis in a continuous culture. Fish Sci 74, 649-656. https://doi.org/10.1111/j.1444-2906.2008.01570.x.   DOI
8 KOSIS (Korean Statistical Information Service). 2020. Expenditure per aquaculture. Retrieved from http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ZTITLE&parmTabId=M_01_01#SelectStatsBoxDiv on May 14, 2020.
9 Kotani T, Genka T, Fushimi H, Hayashi M, Dierckens K and Sorgeloos P. 2009. Effect of cultivation methods on nutritional enrichment of euryhaline rotifer Brachionus plicatilis. Fish Sci 75, 975-984. https://doi.org/10.1007/s12562-009-0105-1.   DOI
10 Kotani T, Fushimi H, Ohta Y, Miyashima A, Sudoh K, Hayashi M, Satoh N and Satoh S. 2013. Effect of graded levels of dietary DHA included in rotifers Brachionus plicatilis on larviculture performance of red sea bream Pagrus major. Aquacult Sci 61, 321-330. https://doi.org/10.11233/aquaculturesci.61.321.
11 Lee JY, Lee C, Kim WK, Park SU and Min BH. 2007. Effects of water temperature on egg development, hatching and larval growth rearing of the Pacific cod Gadus macrocephalus. J Aquacult 20, 260-264.
12 NOAA (National Oceanic and Atmospheric Administration). 2010. Alaska fisheries science center. Retrieved from http://www.afsc.noaa.gov/species/Pacific_cod.php on Mar 12, 2020.
13 Park HG, Puvanendran V, Kellett A, Parrish CC and Brown JA. 2006. Effect of enrichedrotifers on growth, survival, and composition of larval Atlantic cod (Gadus morhua). ICES J Mar Sci 63, 285-295. https://doi.org/10.1016/j.icesjms.2005.10.011.   DOI
14 Parrish CC, Castell JD, Brown JA, Boston L, Strickland JS and Somerton DC. 1994. Fatty acid composition of Atlantic halibut eggs in relation to fertilization. Bull Aquac Assoc Can 94, 36-38.
15 Rainuzzo JR, Reitan KI and Olsen Y. 1997. The significance of lipids at early stages of marine fish: a review. Aquaculture 155, 103-115. https://doi.org/10.1016/S0044-8486(97)00121-X.   DOI
16 Seo Y, Park M, Kim J and Lee S. 2007. Egg development and juvenile growth of the Pacific cod Gadus macrocephalus (Korean East Sea population). Korean J Fish Aquat Sci 40, 380-386. https://doi.org/10.5657/kfas.2007.40.6.380.   DOI
17 Rice JA, Crowder LB and Binkowski FB. 1987. Evaluating potential sources of mortality for larval bloater Corengonus hoyi: starvation and vulnerability to predation. Can J Fish Aquat Sci 44, 467-472. https://doi.org/10.1139/f87-055.   DOI
18 Sargent J, McEvoy LA and Bell JG. 1997. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155, 117-127. https://doi.org/10.1016/S0044-8486(97)00122-1.   DOI
19 Sargent J, Bell G, McEvoy L, Tocher D and Estevez A. 1999a. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191-199. https://doi.org/10.1016/S0044-8486(99)00083-6.   DOI
20 Sargent J, McEvoy L, Estevez A, Bell G, Bell M, Henderson J and Tocher D. 1999b. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179, 217-229. https://doi.org/10.1016/S0044-8486(99)00191-X.   DOI
21 Shin M, Lee S, Jeon H, Joo J and Kwak W. 2019. Effects of starvation and delayed feeding on growth and survival of Pacific cod Gadus macrocephalus larvae. Korean J Ichthyol 22, 121-125.
22 Sorgeloos P, Dhert P and Candreva P. 2001. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147-159. https://doi.org/10.1016/S0044-8486(01)00698-6.   DOI
23 Taylor WW and Freeberg MH. 1984. Effects of food abundance on larval lake whitefish, Coregonus lupeaformis Mitchell, growth and survival. J Fish Biol 25, 733-741. https://doi.org/10.1111/j.1095-8649.1984.tb04919.x.   DOI
24 Tocher D. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11, 107-184. https://doi.org/10.1080/713610925.   DOI
25 Tocher DR and Sargent JR. 1984. Analysis of lipids and fatty acids in ripe roes of some Northwest European marine fish. Lipids 7, 492-499.   DOI
26 Watanabe T. 1993. Importance of docosahexaenoic acid in marine larval fish. J World Aquacult Soc 24, 152-161. https://doi.org/10.1111/j.1749-7345.1993.tb00004.x.   DOI
27 Watanabe T and Kiron V. 1994. Prospects in larval fish dietetics. Aquaculture 124, 223-251. https://doi.org/10.1016/0044-8486(94)90386-7.   DOI
28 Weirich CR and Reigh RC. 2001. Dietary lipids and stress tolerance of larval fish. In: Webster CD and Lim C. (Eds.), Nutrition and fish health. Haworth Press, Inc., Binghampton, New York, NY, U.S.A., 301-312.
29 Coutteau P and Sorgeloos P. 1997. Manipulation of dietary lipids, fatty acids and vitamins in zooplankton cultures. Freshw Biol 38, 501-512. https://doi.org/10.1046/j.1365-2427.1997.00239.x.   DOI
30 Copeman LA, Parrish CC, Brown JA and Harel M. 2002. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder Limanda ferruginea: a live food enrichment experiment. Aquaculture 210, 285-304. https://doi.org/10.1016/S0044-8486(01)00849-3.   DOI
31 Craig SR, Arnold CR and Holt GJ. 1994. The effects of enriching live foods with highly unsaturated fatty acids on the growth and fatty acid composition of larval red drum Sciaenops ocellatus. J World Aquac Soc 25, 424-431. https://doi.org/10.1111/j.1749-7345.1994.tb00226.x.   DOI
32 Cutts CJ, Sawanboonchun J, Mazorra de Quero C and Bell JG. 2006. Diet induced differences in the essential fatty acid (EFA) compositions of larval Atlantic (Gadus morhua L.) with reference to possible effects of dietary EFAs on larval performance. ICES J Mar Sci 63, 302-310. https://doi.org/10.1016/j.icesjms.2005.11.002.   DOI
33 Faulk CK and Holt GJ. 2005. Advances in rearing cobia Rachycentron canadum larvae in recirculating aquaculture systems: live prey enrichment and greenwater culture. Aquaculture 249, 231-243. https://doi.org/10.1016/j.aquaculture.2005.03.033.   DOI
34 Dhert P, Rombaut G, Suantika G and Sorgeloos P. 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200, 129-146. https://doi.org/10.1016/S0044-8486(01)00697-4.   DOI
35 Duncan DB. 1955. Multiple range and multiple F tests. Biometrics 11, 1-42.   DOI
36 Estevez A, McEvoy LA, Bell JG and Sargent JR. 1999. Growth, survival, lipid composition and pigmentation of turbot Scophthalmus maximus larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids. Aquaculture 180, 321-343. https://doi.org/10.1016/S0044-8486(99)00209-4.   DOI
37 Faulk CK, Holt GJ and Davies DA. 2005. Evaluation of fatty acid enrichment of live food for yellowtail snapper Ocyurus chrysurus larvae. J World Aquac Soc 36, 271-281. https://doi.org/10.1111/j.1749-7345.2005.tb00331.x.   DOI
38 Westrheim SJ. 1996. On the Pacific cod Gadus macrocephalus in British Columbia waters, and a comparison with Pacific cod elsewhere, and Atlantic cod G. morhua. Can Tech Rep Fish Aquat Sci 2092, 390.
39 Yoo H, Byun S, Choi J, Nam M, Lee HM, Kang HW and Lee C. 2016. Optimal enrichment temperature, time and materials for L-type rotifer Brachionus plicatilis cultured at a low temperature. J Korean Soc Mar Environ Saf 22, 500-507. https://doi.org/10.7837/kosomes.2016.22.5.500.   DOI
40 Yoshimura K, Usuki K, Yoshimatsu T, Kitajima C and Hagiwara A. 1997. Recent development of a high density mass culture system for the rotifer Brachionus rotundiformis Tschugunoff. Hydrobiologia 358, 139-144. https://doi.org/10.1023/A:1003169414996.   DOI
41 Folch J, Lees M and Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 22, 497-509.
42 Frolov AV, Pankov SL, Geradze KN, Pankova SA and Spektorova LV. 1991. Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis. Aquaculture 97, 181-202. https://doi.org/10.1016/0044-8486(91)90264-8.   DOI
43 Cavalin FG and Weirich CR. 2009. Larval performance of aquacultured Florida pompano Trachinotus carolinus fed rotifers Brachionus plicatilis enriched with selected commercial diets. Aquaculture 292, 67-73. https://doi.org/10.1016/j.aquaculture.2009.03.042.   DOI
44 AOAC (Association of official analytical chemists). 1990. Official methods of analysis. 17th edition. Washington DC, U.S.A.
45 Bautista MN and De la Cruz MC. 1988. Linoleic (${\omega}$) and linolenic (${\omega}$3) acids in the diet of fingerling milkfish (Chanos chanos Forsskal). Aquaculture 71, 347-358. https://doi.org/10.1016/0044-8486(88)90204-9.   DOI
46 Benitez-Santana T, Masuda R, Juarez Carillo E, Ganuza E, Valencia A, Hernandez-Cruz CM and Izquierdo MS. 2007. Dietary n-3 HUFA deficiency induces a reduced visual response in gilthead seabream Sparus aurata larvae. Aquaculture 264, 408-417. https://doi.org/10.1016/j.aquaculture.2006.10.024.   DOI
47 Cho SH, Hur SB and Jo JY. 2001. Effect of enriched live feeds on survival and growthrates in larval Korean rockfish, Sebastes schlegeli Hilgendorf. Aquac Res 32, 199-208. https://doi.org/10.1046/j.1365-2109.2001.00547.x.
48 Choi Y, Park H and Oh S. 2011. Effects of stocking density and feeding frequency on the growth of the Pacific cod, Gadus macrocephalus. Korean J Fish Aquat Sci 44, 58-63. https://doi.org/10.5657/kfas.2011.44.1.058.   DOI
49 Garcia AS, Parrish CC and Brown JA. 2008. A comparison among differently enriched rotifers Brachionus plicatilis and their effect on Atlantic cod Gadus morhua larvae early growth, survival and lipid composition. Aquac Nutr 14, 14-30. https://doi.org/10.1111/j.1365-2095.2007.00500.x.   DOI
50 Furuita H, Konishi K and Takeuchi T. 1999. Effect of different levels of eicosapentaenoic and docosahexaenoic acid in Artemia nauplii on growth, survival and salinity tolerance of larvae of the Japanese flounder, Paralichthys olivaceus. Aquaculture 170, 59-69. https://doi.org/10.1016/S0044-8486(98)00386-X.   DOI
51 Gawk W. 2010. Fecundity of Pacific cod Gadus macrocephalus in Jinhae bay during spawning period. Korean J Ichthyol 22, 121-125.
52 Gwak W, Choi B and Lee So. 2012. Spawning time and early growth of Pacific cod Gadus macrocephalus in Jinhae Bay, Korea. Korean J Ichthyol 24, 110-117.
53 Gisbert E, Conklin DB and Piedrahita RH. 2004. Effects of delayed first feeding on thenutritional condition and mortality of California halibut larvae. J Fish Biol 64, 116-132. https://doi.org/10.1111/j.1095-8649.2004.00289.x.   DOI
54 Hagiwara A, Gallardo WG, Assavaaree M, Kotani T and De Araujo AB. 2001. Live food production in Japan; recent progress and future aspects. Aquaculture 200, 11-127. https://doi.org/10.1016/S0044-8486(01)00696-2.