Browse > Article
http://dx.doi.org/10.5657/KFAS.2020.0423

In vivo and In vitro Digestibility of Enzyme-treated Fish Meal for Juvenile Atlantic Bluefin Tuna Thunnus thynnus  

Shin, Jaehyeong (Department of Marine Life Science, Jeju National University)
Ji, Seung-Cheol (Jeju Sea Fisheries Research Institute, National Institute of Fisheries Science)
Lee, Kyeong-Jun (Marine Science Institute, Jeju National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.53, no.3, 2020 , pp. 423-431 More about this Journal
Abstract
This study was conducted to investigate in vivo and in vitro digestibility in juvenile Atlantic Bluefin tuna Thunnus thynnus. In vivo digestibility was compared between four experimental diets to determine the optimum dietary inclusion level of an enzyme-treated sardine fish meal (EFM) and sardine fish meal (FM). The experimental diets were as follows; EFM75 (75% EFM), EFM60 (60% EFM and 15% FM), FM75 (75% FM) and SL (frozen sand lance) as a raw fish feed. Feces of Bluefin tuna (90.3 g) were collected both by siphoning from a 700 L cage and by dissection in 69 ton concrete rearing tanks. For the siphoning method, protein digestibility was higher in the tuna fed SL diet than that of other groups. The lowest protein digestibility was observed in FM75. For the dissection method, protein digestibility was higher in tuna fed EFM75 diet than that of other groups. The lowest protein digestibility was observed in the EFM60 group. In vitro digestibility was compared in six protein sources to find an alternative source of EFM for the tuna feed. The highest in vitro digestibility was observed in EFM (92%) followed by low temperature FM (72%), meat meal (65%), feather meal (60%), sardine fish meal (57%) and poultry by-product meal (55%).
Keywords
Digestibility; Bluefin tuna; Enzyme-treated fish meal; Ingredient; Fish meal;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Barnett BJ, Cho CY and Slinger SJ. 1982. Relative biopotency of dietary ergocalciferol and cholecalciferol and the role of and requirement for vitamin D in rainbow trout Salmo gairdneri. Nutr J 112, 2011-2019.
2 Betancor MB, Ortega A, de la Gándara F, Tocher DR and Mourente G. 2017. Molecular aspects of lipid metabolism, digestibility and antioxidant status of Atlantic bluefin tuna (T. thynnus L.) larvae during first feeding. Aquaculture 479, 357-369. https://doi.org/10.1016/j.aquaculture.2017.06.011.   DOI
3 Biswas A, Biswas BK, Ito J, Takaoka O, Yagi N, Itoh S and Takii K. 2011. Soybean meal can partially replace enzymetreated fish meal in the diet of juvenile Pacific bluefin tuna Thunnus orientalis. Fish Sci 77, 615-621. https://doi.org/10.1007/s12562-011-0363-6.   DOI
4 Biswas A, Nakajima M, Nakao T, Takaoka O and Takii K. 2016. Determination of suitable protein and lipid levels in diets for Pacific bluefin tuna, Thunnus orientalis at grow-out stage. Aquacult Sci 64, 281-288. https://doi.org/10.11233/aquaculturesci.64.281.
5 Biswas BK, Biswas A, Junichi I, Kim YS and Takii K. 2013. The optimal dietary level of ascorbic acid for juvenile Pacific bluefin tuna, Thunnus orientalis. Aquacult Int 21, 327-336. https://doi.org/10.1007/s10499-012-9555-z.   DOI
6 Biswas BK, Ji SC, Biswas AK, Seoka M, Kim YS and Takii K. 2009a. A suitable dietary sugar level for juvenile Pacific bluefin tuna, Thunnus orientalis. Aquacult Sci 57, 99-108. https://doi.org/10.11233/aquaculturesci.57.99.
7 Degani G and Levanon D. 1983. The influence of low density on food adaptation, cannibalism and growth of eels Anguilla Anguilla (L.). Bamidgeh 35, 53-60.
8 Deng J, Mai K, Chen L, Mi H and Zhang L. 2015. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia Oreochromis niloticus$\times$O. aureus. Fish Shellfish Immunol 44, 436-444. https://doi.org/10.1016/j.fsi.2015.03.018.   DOI
9 Divakaran S, Obaldo, LG and Forster IP. 2002. Note on the methods for determination of chromic oxide in shrimp feeds. J Agric Chem 50, 464-467. https://doi.org/10.1021/jf011112s.   DOI
10 Uscanga A, Moyano FJ and Alvarez CA. 2010. Assessment of enzymatic efficiency on protein digestion in the tilapia Oreochromis niloticus. Fish Physiol Biochem 36, 1079-1085. https://doi.org/10.1007/s10695-010-9385-8.   DOI
11 Usmani N and Jafri AK. 2002. Effect of fish size and temperature on the utilization of different protein sources in two catfish species. Aquac Res 33, 959-967. https://doi.org/10.1046/j.1365-2109.2002.00747.x.   DOI
12 Vandenberg GW and De La Noue J. 2001. Apparent digestibility comparison in rainbow trout Oncorhynchus mykiss assessed using three methods of faeces collection and three digestibility markers. Aquac Nutr 7, 237-245. https://doi.org/10.1046/j.1365-2095.2001.00181.x.   DOI
13 Vergara JM, Lopez-Calero G, Robaina L, Caballero MJ, Montero D, Izquierdo MS and Aksnes A. 1999. Growth, feed utilization and body lipid content of gilthead seabream Sparus aurata fed increasing lipid levels and fish meals of different quality. Aquaculture 179, 35-44. https://doi.org/10.1016/s0044-8486(99)00150-7.   DOI
14 Forde-Skjaervik O, Refstie S, Aslaksen MA and Skrede A. 2006. Digestibility of diets containing different soybean meals in Atlantic cod Gadus morhua; comparison of collection methods and mapping of digestibility in different sections of the gastrointestinal tract. Aquaculture 261, 241-258. https://doi.org/10.1016/j.aquaculture.2006.07.009.   DOI
15 Grove DJ, Loizides LG and Nott J. 1978. Satiation amount, frequency of feeding gastric emptying rate in Salmo gairdneri. J Fish Biol 12, 507-516. https://doi.org/10.1111/j.1095-8649.1978.tb04195.x.   DOI
16 Halver JE. 1972. The vitamins. In: Fish nutrition. Halver JE, ed. Academic Press, New York, NY, U.S.A., 29-103.
17 Harada T. 1971. On the artificial fertilization and rearing of larvae in yellowfin tuna. Mem Fac Agric Kinki Univ 4, 145-151.
18 Ngo DH, Qian ZJ, Ryu B, Park JW and Kim SK. 2010. In vitro antioxidant activity of a peptide isolated from Nile tilapia Oreochromis niloticus scale gelatin in free radical-mediated oxidative systems. J Funct Foods 2, 107-117. https://doi.org/10.1016/j.jff.2010.02.001.   DOI
19 Hecht T and Pienaar AG. 1993. A review of cannibalism and its implications in fish larvae culture. J World Aquac Soc 24, 246-261. https://doi.org/10.1111/j.1749-7345.1993.tb00014.x.   DOI
20 Hilton JW, Hodson PV and Slinger SJ. 1980. The requirement and toxicity of selenium in rainbow trout Salmo gairdneri. Nutr J 110, 2527-2535. https://doi.org/10.1093/jn/110.12.2527.   DOI
21 Sawada Y, Okada T, Miyashita S, Murata O and Kumai H. 2005. Completion of the Pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel) life cycle. Aquac Res 36, 413-421. https://doi.org/10.1111/j.1365-2109.2005.01222.x.   DOI
22 Robinson EH, Rawles SD, Yette HE and Greene LW. 1984. An estimate of the dietary calcium requirement of fingerling tilapia aurea reared in calcium-free water. Aquaculture 41, 389-393. https://doi.org/10.1016/0044-8486(84)90206-0.   DOI
23 Sakakura Y and Tsukamoto K. 1998. Effects of density, starvation and size difference on aggressive behaviour in juvenile yellowtails Seriola quinquevadiata. J Appl Ichthyol 14, 9-13. https://doi.org/10.1111/j.1439-0426.1998.tb00607.x.   DOI
24 Sakamoto S and Yone Y. 1978. Requirement of red sea bream for dietary iron-II. Nippon suisan Gakk 44, 223-225. https://doi.org/10.2331/suisan.44.223.   DOI
25 Shearer KD. 1989. Whole body magnesium concentration as an indicator of magnesium status in rainbow trout Salmo gairdneri. Aquaculture 77, 201-210. https://doi.org/10.1016/0044-8486(89)90202-0.   DOI
26 Shiau SY and Hsieh JF. 2001. Quantifying the dietary potassium requirement of juvenile hybrid tilapia (Oreochromis niloticus$\times$O. aureus). Brit J Nutr 85, 213-218. https://doi.org/10.1079/BJN2000245.   DOI
27 Moyano FJ, Diaz M, Alarcon FJ and Sarasquete MC. 1996. Characterization of digestive enzyme activity during larval development of gilthead seabream Sparus aurata. Fish Physiol Biochem 15, 121-130. https://doi.org/10.1007/BF01875591.   DOI
28 Windell JT, Foltz JW and Sarokon JA. 1978. Effect of fish size, temperature, and amount fed on nutrient digestibility of a pelleted diet by rainbow trout, Salmo gairdneri. Trans Am Fish Soc 107, 613-616. https://doi.org/10.1577/1548-8659(1978)107<613:EOFSTA>2.0.CO;2.   DOI
29 Shimeno S. 1991. Yellowtail, Seriola quinqueradiata. In: Handbook of nutrition requirements of finfish, Wilson RP, ed. CRC Press, Florida, FL, U.S.A., 181-191.
30 Koven W, Nixon O, Allon G, Gaon A, El Sadin, S, Falcon J and Tandler A. 2018. The effect of dietary DHA and taurine on rotifer capture success, growth, survival and vision in the larvae of Atlantic bluefin tuna Thunnus thynnus. Aquaculture 482, 137-145. https://doi.org/10.1016/j.aquaculture.2017.09.039.   DOI
31 Muhammadar AA, Mazlan AG, Samat A, Simon KD, Asmawati MS, Muchlisin ZA and Rimmer M. 2012. Feed digestion rates of tiger grouper Epinephelus fuscoguttatus juvenile. Aquac Aquar Conserv Legis 5, 356-360.
32 Hsu KC. 2010. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle byproduct. Food Chem 122, 42-48. https://doi.org/10.1016/j.foodchem.2010.02.013.   DOI
33 Neklyudov AD, Ivankin and Berdutina AV. 2000. Properties and uses of protein hydrolysates. Appl Biochem Microbiol 36, 452-459. https://doi.org/10.1007/bf02731888.   DOI
34 Nilisson PA and Bröunamark C. 2000. The role of gastric evacuation rate in handling time of equal-mass rations of different prey sizes in northern pike. J. Fish Biol. 57, 516-524. https://doi.org/10.1111/j.1095-8649.2000.tb02189.x.   DOI
35 NRC (National Research Council). 2011. 16 Replacement of marine resources. In: Nutrient requirements of fish and shrimp. The National Academies Press, New York, NY, U.S.A., 305.
36 Oliva-Teles A. 1998. Apparent digestibility coefficients of feedstuffs in seabass Dicentrarchus labrax juveniles. Aquat Living Resour 11, 187-191. https://doi.org/10.1016/s0990-7440(98)80115-0.   DOI
37 Worthington CC. 1991. Pepsin and amylase. In: Worthington CC enzyme manual: enzymes and related bio chemicals. Worthington Biochemical Corporation, Freehold, New Jersey, NJ, U.S.A., 179-180.
38 Ogino C and Yang GY. 1980. Requirements of carp and rainbow trout for dietary manganese and copper. Bull Japan Soc Sci Fish 46, 455-458.   DOI
39 Ohnishi T, Biswas A, Kaminaka K, Nakao T, Nakajima M, Sakakibara N and Takii K. 2016. Energy partitioning in cultured juvenile Pacific bluefin tuna, Thunnus orientalis (Temminck & Schlegel, 1844). Aquac Res 47, 2040-2049. https://doi.org/10.1111/are.12658.   DOI
40 Ospina-Salazar GH, Rios-Duran MG, Toledo-Cuevas EM and Martinez-Palacios CA. 2016. The effects of fish hydrolysate and soy protein isolate on the growth performance, body composition and digestibility of juvenile pike silverside, Chirostoma estor. Anim Feed Sci Technol 220, 168-179. https://doi.org/10.1016/j.anifeedsci.2016.08.011.   DOI
41 Paakkonen JP and Marjomaki TJ. 1997. Gastric evacuation rate of burbot fed single-fish meals at different temperatures. J Fish Biol 50, 555-563. https://doi.org/10.1111/j.1095-8649.1997.tb01949.x.   DOI
42 Parra AM, Rosas A, Lazo JP and Viana MT. 2007. Partial characterization of the digestive enzymes of Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiol Biochem 33, 223-231. https://doi.org/10.1007/s10695-007-9134-9.   DOI
43 Ji SC, Shin JH, Kim DJ, Jeong MH, Kim JH and Lee KJ. 2020. Utilization of enzyme-treated fish meal and DHA oil in diets for juvenile Atlantic bluefin tuna Thunnus thynnus. Korean J Fish Aquat Sci 53, 181-190. https://doi.org/10.5657/KFAS.2020.0181.   DOI
44 Hughes SG. 1989. Effect of dietary moisture level on response to diet by Atlantic salmon. Prog Fish Cult 51, 20-23. https:// doi.org/10.1577/1548-8640(1989)051<0020:EODMLO>2.3.CO;2.   DOI
45 Je JY, Lee KH, Lee MH and Ahn CB. 2009. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res Int 42, 1266-1272. https://doi.org/10.1016/j.foodres.2009.06.013.   DOI
46 Ji SC, Kim BS, Lim SG, Kim KW, Shin JH and Lee KJ. 2017. Dietary utilization of enzyme treated fish meal for juvenile Pacific blufin tuna Thunnus orientalis. J Kor Soc Fish Mar Edu 29, 1365-1372. https://doi.org/10.13000/jfmse.2017.29.5.1365.
47 Ji SC, Shin JH, Kim DJ, Yang SG, Jeong MH, Kim JH and Lee KJ. 2019. Dietary utilization of enzyme treated fish meal as the main protein source for juvenile Atlantic blufin tuna Thunnus thynnus. J Kor Soc Fish Mar Edu 31, 741-755. https://doi.org/10.13000/jfmse.2019.6.31.3.741.
48 Borlongan IG. 1990. Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture 89, 315-325. https://doi.org/10.1016/0044-8486(90)90135-a.   DOI
49 Aguila J, Cuzon G, Pascual C, Domingues PM, Gaxiola G, Sánchez A and Rosas C. 2007. The effects of fish hydrolysate (CPSP) level on Octopus maya (Voss and Solis) diet: digestive enzyme activity, blood metabolites, and energy balance. Aquaculture 273, 641-655. https://doi.org/10.1016/j.aquaculture.2007.07.010.   DOI
50 Biswas BK, Ji SC, Biswas AK, Seoka M, Kim YS, Kawasaki KI and Takii K. 2009b. Dietary protein and lipid requirements for the Pacific bluefin tuna Thunnus orientalis juvenile. Aquaculture 288, 114-119. https://doi.org/10.1016/j.aquaculture.2008.11.019.   DOI
51 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254. https://doi.org/10.1006/abio.1976.9999.   DOI
52 Buentello JA, Pohlenz C, Margulies D, Scholey VP, Wexler JB, Tovar-Ramírez D and Gatlin DM. 2011. A preliminary study of digestive enzyme activities and amino acid composition of early juvenile yellowfin tuna Thunnus albacares. Aquaculture 312, 205-211. https://doi.org/10.1016/j.aquaculture.2010.12.027.   DOI
53 Carter CG, Bransden MP, Van Barneveld RJ and Clarke SM. 1999. Alternative methods for nutrition research on the Southern bluefin tuna, Thunnus maccoyii: in vitro digestibility. Aquaculture 179, 57-70. https://doi.org/10.1016/s0044-8486(99)00152-0.   DOI
54 Chalamaiah M, Hemalatha R and Jyothirmayi T. 2012. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem 135, 3020-3038. https://doi.org/10.1016/j.foodchem.2012.06.100.   DOI
55 Chatzifotis S, Papadakis IE and Divanach P. 2005. Effect of dietary water on growth of dentex Dentex dentex. Fish Sci 71, 1243-1248. https://doi.org/10.1111/j.1444-2906.2005.01089.x.   DOI
56 Lee SM. 2002. Apparent digestibility coefficients of various feed ingredients for juvenile and grower rockfish Sebastes schlegeli. Aquaculture 207, 79-95. https://doi.org/10.1016/s0044-8486(01)00751-7.   DOI
57 Takii K, Seoka M, Izumi M, Hosokawa H, Shimeno S, Ukawa M and Kohbara J. 2007a. Apparent digestibility coefficient and energy partition of juvenile Pacific bluefin tuna, Thunnus orientalis and chub mackerel, Scomber japonicus. Aquacult Sci 55, 571-577. https://doi.org/10.11233/aquaculturesci1953.55.571.
58 Takii K, Seoka M, Ohara N, Nasu T, Oda S, Miyashita S and Hosokawa H. 2007b. Dietary utility of Chilean fish meal and pollack liver oil for juvenile Pacific bluefin tuna. Aquacult Sci 55, 579-585. https://doi.org/10.11233/aquaculturesci1953.55.579.
59 Krossoy C, Waagbo R, Fjelldal PG, Wargelius A, Lock EJ, Graff IE and Ornsrud R. 2009. Dietary menadione nicotinamide bisulphite (vitamin K3) does not affect growth or bone health in first-feeding fry of Atlantic salmon (Salmo salar L.). Aquac Nutr 15, 638-649. https://doi.org/10.1111/j.1365-2095.2008.00633.x.   DOI
60 La Roche G, Johnson CL and Woodall AN. 1966. Iodine metabolism in young chinook salmon (Oncorhynchus tschawytscha, Walbaum): I. Thyroidal impairment with the use of 131I. Gen Comp Endocrinol 7, 512-524. https://doi.org/10.1016/0016-6480(66)90073-6.   DOI
61 Li Y, Ai Q, Mai K, Xu W, Deng J and Cheng Z. 2014. Comparison of high-protein soybean meal and commercial soybean meal partly replacing fish meal on the activities of digestive enzymes and aminotransferases in juvenile Japanese seabass, Lateolabrax japonicus (Cuvier, 1828). Aquac Res 45, 1051-1060. https://doi.org/10.1111/are.12042.   DOI
62 Liu H, Zhu X, Yang Y, Han D, Jin J and Xie S. 2016. Effect of substitution of dietary fishmeal by soya bean meal on different sizes of gibel carp Carassius auratus gibelio: nutrient digestibility, growth performance, body composition and morphometry. Aquac Nutr 22, 142-157. https://doi.org/10.1111/anu.12239.   DOI
63 Ketola HG. 1975. Requirement of Atlantic salmon for dietary phosphorus. Trans Am Fish Soc 104, 548-551. https://doi. org/10.1577/1548-8659(1975)104<548:ROASFD>2.0.CO;2.   DOI
64 Ji SC, Takaoka O, Biswas AK, Seoka M, Ozaki K, Kohbara J and Takii K. 2008. Dietary utility of enzyme-treated fish meal for juvenile Pacific bluefin tuna Thunnus orientalis. Fish Sci 74, 54-61. https://doi.org/10.1111/j.1444-2906.2007.01475.x.   DOI
65 Julshamn K, Andersen KJ, Ringdal O and Brenna J. 1988. Effect of dietary copper on the hepatic concentration and subcellular distribution of copper and zinc in the rainbow trout Salmo gairdneri. Aquaculture 73, 143-155. https://doi.org/10.1016/0044-8486(88)90049-X.   DOI
66 Katavic I, Jug-Dujakovic J and Glamuzina B. 1989. Cannibalism as a factor affecting the survival of intensively cultured sea bass Dicentrarchus labrax fingerlings. Aquaculture 77, 135-143. https://doi.org/10.1016/0044-8486(89)90197-x.   DOI
67 Kim KD, Kim KW, Kang YJ, Son MH and Lee SM. 2011. Effects of the dietary moisture levels and feeding rate on the growth and gastric evacuation of young olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 14, 105-110. https://doi.org/10.5657/fas.2011.0105.
68 Kondo F, Iwai T, Miura C, Sakata J, Ohta T, Ido A and Miura T. 2016. Analysis of feeding effects of EP on growth and digestion in cultured bluefin tuna. Nippon suisan Gakk 82, 923-933. https://doi.org/10.2331/suisan.16-00030.   DOI
69 AOAC (Association of official analytical chemists). 2005. Official methods of analysis. AOAC, Arlington, VA, U.S.A.
70 Allan GL, Parkinson S, Booth MA, Stone DA, Rowland SJ, Frances J and Warner-Smith R. 2000. Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus: I. Digestibility of alternative ingredients. Aquaculture 186, 293-310. https://doi.org/10.1016/s0044-8486(99)00380-4.   DOI
71 Folch J, Lee M and Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226, 497-509.   DOI
72 Davies SJ, Abdel Warith AA and Gouveia A. 2011. Digestibility characteristics of selected feed ingredients for developing bespoke diets for Nile tilapia culture in Europe and North America. J World Aquac Soc 42, 388-398. https://doi.org/10.1111/j.1749-7345.2011.00478.x.   DOI
73 Eid AE and Matty AJ. 1989. A simple in vitro method for measuring protein digestibility. Aquaculture 79, 111-119. https://doi.org/10.1016/0044-8486(89)90451-1.   DOI
74 Erlanger B, Kokowsky N and Cohen W. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95, 271-278. https://doi.org/10.1016/0003-9861(61)90145-x.   DOI
75 FAO (Food and agriculture organization of the united nations). 2011. Review of the state of world marine fishery resources. Fisheries and aquaculture technical paper 569, 49-66.
76 Ferraris RP, Catacutan MR, Mabelin RL and Jazul AP. 1986. Digestibility in milkfish, Chanos chanos (Forsskal): effects of protein source, fish size and salinity. Aquaculture 59, 93-105. https://doi.org/10.1016/0044-8486(86)90123-7.   DOI
77 Folkvord A. 1991. Growth, survival and cannibalism of cod juveniles Gadus morhua: effects of feed type, starvation and fish size. Aquaculture 97, 41-59. https://doi.org/10.1016/0044-8486(91)90278-f.   DOI