Browse > Article
http://dx.doi.org/10.5657/KFAS.2020.0112

Characteristics of Aminopeptidase Retentate Fraction from the Common Squid Todarodes pacificus Hepatopancreas Obtained by Ultrafiltration, and Its Lowering the Bitterness  

Kim, Jin-Soo (Research Center for Industrial Development of Seafood, Gyeongsang National University)
Lee, Jung Suck (Research Center for Industrial Development of Seafood, Gyeongsang National University)
Yoon, In Seong (Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University)
Kang, Sang In (Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University)
Park, Sun Young (Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University)
Jeong, U-Cheol (Research Center for Industrial Development of Seafood, Gyeongsang National University)
Heu, Min Soo (Research Center for Industrial Development of Seafood, Gyeongsang National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.53, no.1, 2020 , pp. 112-122 More about this Journal
Abstract
This study investigated some enzymatic properties and bitterness improvement of an aminopeptidase retentate fraction (ARF) from common squid Todarodes pacificus hepatopancreas extract (HPE), obtained by ultrafiltration with a 10 kDa molecular weight cut off membrane. Endoprotease and aminopeptidase (AP) activity, and the purity of the ARF (>10 kDa) increased by 6.69-18.11 U/mg and 1.5-2.6 fold, respectively, compared to HPE (2.63-9.37 U/mg). The AP activity toward LeuPNA was stable at 20-55℃ and pH 5-9, but decreased slightly with increasing concentration of NaCl in the reaction mixture. The ARF was the most active MetPNA and preferentially hydrolyzed Glu, Leu and AlaPNA. The bitterness tryptic casein hydrolysates (BTCHs) were treated with ARF, and the bitterness of ARF-BTCHs significantly decreased with increasing amounts of released amino acids Ala, Val, Met, Ile and Leu, which show strong correlations with bitterness. Therefore, the ARF of T. pacificus HPE obtained by ultrafiltration may have a considerable potential for application in protein hydrolysis and appears to be ideally suited to the purpose of lowing bitterness in protein hydrolysates.
Keywords
Todarodes pacificus; Hepatopancreas; Ultrafiltration; Aminopeptidase; Lowing bitterness;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Degraeve P and Martial-Gros A. 2003. Purification and partial characterisation of X-prolyl dipeptidyl aminopeptidase of Lactobacillus helveticus ITG LH1. Inter Dairy J 13, 497-507. https://doi.org/10.1016/s0958-6946(03)00057-8.
2 Dewitt MCA and Morrissey MT. 2002. Parameters for the recovery of proteases from surimi wash water. Bioresour. Technol 81, 241-247. https://doi.org/10.1016/s0960-8524(01)00130-4.   DOI
3 Dixon M, Webb EC and Thorne CJR. 1979. Tipton KF. Enzymes, 3rd ed. Longman, London, U.K., 138.
4 Ezquerra-Brauer JM, Haard NF, Ramiirez-Olivas R, Olivas-Burrola H and Velazquez-Saanchez CJ. 2002. Influence of harvest season on the proteolytic activity of hepatopancreas and mantle tissues from jumbo squid (Doswicus gigas). J Food Biochem 26, 459-475. https://doi.org/10.1111/j.1745-4514.2002.tb00766.x.   DOI
5 Ghosh R, Silva SS and Cui ZF. 2000. Lysozyme separation by hollow-fibre ultrafiltration. Biochem Eng J 6, 19-24. https://doi.org/10.1016/s1369-703x(00)00069-3.   DOI
6 Gildberg A. 1992. Recovery of proteases and protein hydrolysates from fish viscera. Bioresour Technol 39, 271-276. https://doi.org/10.1016/0960-8524(92)90216-k.   DOI
7 Heu MS and Ahn SH. 1999. Development and fractionation of proteolytic enzymes from an inedible seafood product. J Kor Fish Soc 32, 458-465.
8 Ishibashi N, Arita Y, Kanehisa H, Kogure K, Okai H and Fukui S. 1987. Bitterness of leucine-containing peptides. Agric Biol Chem 51, 2389-2394. https://doi.org/10.1080/00021369.1987.10868411.   DOI
9 Izawa N, Tokuyasu K and Hayashi K. 1997. Debittering of protein hydrolysates using Aeromonas caviae aminopeptidase. J Agric Food Chem 45, 543-545. https://doi.org/10.1021/jf960784t.   DOI
10 Kim EM, Jo JH, Oh SW and Kim YM. 1997. Characteristics of squid viscera oil. Korean J Fish Aquat Sci 30, 595-600.
11 Kim IS, Choi YJ, Heu MS, Cho YJ, Im YS, Gu YS, Yeo SG and Park JW. 1999. Peptide properties of rapid salted and fermented anchovy sauce using various proteases. J Korean Fish Soc 32, 481-487.
12 Kim JS, Kim MJ, Kim KH, Kang SI, Park SH, Lee HJ and Heu MS. 2014a. Debittering of enzymatic hydrolysate using exopeptidase active fractions from the Argentina shortfin squid Illex argentinus hepatopancreas. Korean J Fish Aquat Sci 47, 135-143. https://doi.org/10.5657/kfas.2014.0135.   DOI
13 Kim HS, Yang SK, Park CH, Han BW, Kang KT, Ji SJ, Sye YE, Heu MS and Kim JS. 2005. Preparation of accelerated salt-fermented Anchovy sauce added with shrimp byproducts. J Kor Soc Food Sci Nutr 34, 1265-1273. https://doi.org/10.3746/jkfn.2005.34.8.1265.   DOI
14 Kim HS, Kim JS and Heu MS. 2008a. Fractionation of endoprotease from viscera of the Argentina shortfin squid, Illex argentinus. Korean J Fish Aquat Sci 41, 176-181. https://doi.org/10.5657/kfas.2008.41.3.176.   DOI
15 Kim HS, Kim JS and Heu MS. 2008b. Fractionation of exopeptidase from viscera of Argentina shortfin Squid, Illex argentinus. J Kor Soc Food Sci Nutr 37, 1009-1017. https://doi.org/10.3746/jkfn.2008.37.8.1009.   DOI
16 Li Z, Youravong W and H-Kittikun A. 2006. Separation of proteases from yellowfin tuna spleen by ultrafiltration. Bioresour Technol 97, 2364-2370. https://doi.org/10.1016/j.biortech.2005.10.019.   DOI
17 Kim JS, Kim HS, Lee HJ, Park SH, Kim KH, Kang SI and Heu MS. 2014b. Lowering the bitterness of enzymatic hydrolysate using aminopeptidase-active fractions from the common squid (Todarodes pacificus) hepatopancreas. Kor J Food Sci Technol 46, 716-722. https://doi.org/10.9721/kjfst.2014.46.6.716.   DOI
18 Kim MJ, Kim HJ, Kim KH, Heu MS and Kim JS. 2012a. Endoprotease and exopeptidase activities in the hepatopancreas of the cuttlefish Sepia officinalis, the squid Todarodes pacificus, and the octopus Octopus vulgaris Cuvier. Korean J Fish Aquat Sci 15, 197-202. https://doi.org/10.5657/fas.2012.0197.
19 Kim MJ, Kim HJ, Kim KH, Heu MS, Lee JS and Kim JS. 2012b. Fractionation and enzymatic characterization of endoprotease and exopeptidase from crude extracts of cuttlefish Sepia officinalis hepatopancreas. Korean J Fish Aquat Sci 15, 283-291. https://doi.org/10.5657/fas.2012.0283.
20 Lalasidis G and Sjoberg LB. 1978. Two new methods of debittering protein hydrolysates and a fraction of hydrolysates with exceptionally high content of essential amino acids. J Agric Food Chem 26, 742-749. https://doi.org/10.1021/jf60217a056.   DOI
21 Lin SB, Nelles LP, Cordle CT and Thomas RL. 1997. Debittering casein hydrolysates with octadecyl-siloxane (C18) columns. J Food Sci 62, 665-670. https://doi.org/10.1111/j.1365-2621.1997.tb15431.x.   DOI
22 Minagawa E, Kaminogawa S, Tsukasaki F and Yamauchi K. 1989. Debittering mechanism in bitter peptides of enzymatic hydrolysates from milk casein by aminopeptidase T. J Food Sci 54, 1225-1229. https://doi.org/10.1111/j.1365-2621.1989.tb05960.x.   DOI
23 Liu F and Yasuda M. 2005. Debittering effect of Monascus carboxypeptidase during the hydrolysis of soybean protein. J Ind Microbiol Biotechnol 32, 487-489. https://doi.org/10.1007/s10295-005-0024-9.   DOI
24 Lowry OH, Watanabe NJ, Farr AL and Randall RJ. 1951. Protein measurement with the folin-phenol reagent. J Biol Chem 193, 265-275.
25 McDonald JK and Barrett AJ. 1986. Mammalian proteases : A glossary and bibliography. Volume 2 : Exopeptidases. Academic Press Inc. Ltd., London, U.K., 23-59.
26 Murai A, Tsujimoto Y, Matsui H and Watanabe K. 2004. An Aneurinibacillus sp. strain AM-1 produces a proline-specific aminopeptidase useful for collagen degradation. J Appl Microbiol 96, 810-818. https://doi.org/10.1111/j.1365-2672.2004.02210.x.   DOI
27 Nishiwaki T, Yoshimizu S, Furuta M and Hayashi K. 2002. Debittering of enzymatic hydrolysates using an aminopeptidase from edible Basidiomycete Grifola frondosa. J Biosci Bioeng 93, 60-63. https://doi.org/10.1016/s1389-1723(02)80055-x.   DOI
28 Park MJ, Lee JK, Kim JW, Nam HS and Oh TK. 1998. Characterization of a glutamyl aminopeptidase from Bacillus licheniformis NS115. Kor J Appl Microbiol Biotechnol 26, 420-426.
29 Ono S, Kasai D, Sugano T, Ohba K and Takahashi K. 2004. Production of water soluble antioxidative plastein from squid hepatopancreas. J Oleo Sci 53, 267-273. https://doi.org/10.5650/jos.53.267.   DOI
30 Pan D and Tanokura M. 2004. Purification and characterization of an aminopeptidase from Lactobacillus helveticus JCM 1004. Food Chem 88, 511-516. https://doi.org/10.1016/j.foodchem.2004.01.082.   DOI
31 Park SY and Lee BH. 1996. Effects of Lactobacillus casei LLG on flavor of enzyme-modified cheese. 1. Degradation of hydrophobic peptides by aminopeptidase. Kor J Food Sci Ani Resour 16, 147-154.
32 Raksakulthai R and Haard NF. 1999. Purification and characterization of aminopeptidase fractions from squid (Illex illecebrosus) hepatopancreas. J Food Biochem 23, 123-144. https://doi.org/10.1111/j.1745-4514.1999.tb00010.x.   DOI
33 Raksakulthai R and Haard NF. 2001. Purification and characterization of a carboxypeptidase from squid hepatopancreas (Illex illecebrosus). J Agric Food Chem 49, 5019-5030. https://doi.org/10.1021/jf010320h.   DOI
34 Saha BC and Hayashi K. 2001. Debittering of protein hydrolyzates. Biotechnol Adv 19, 355-370. https://doi.org/10.1016/s0734-9750(01)00070-2.   DOI
35 Sanz Y and Toldra F. 2002. Purification and characterization of an arginine aminopeptidase from Lactobacillus sakei. Appl Environ Microbiol 68, 1980-1987.   DOI
36 Sugiyama M, Lousu S, Hanabe M and Okuda Y. 1989. Organs and other tissues. In: Utilization of squid. Balkeman AA, ed. CRC Press, Rotterdam, Netherlands, 90-101.
37 Umetsu H, Matsuoka H and Ichishima E. 1983. Debittering mechanism of bitter peptides from milk casein by wheat carboxypeptidase. J Agric Food Chem 31, 50-53. https://doi.org/10.1021/jf00115a013.   DOI
38 Torres MR, Marin FR, Ramos AJ and Soriano E. 2002. Study of operating conditions in concentration of chicken blood plasma proteins by ultrafiltration. J Food Eng 54, 215-219. https://doi.org/10.1016/s0260-8774(01)00204-7.   DOI
39 Umetsu H, Arai M, Ota T, Kudo R, Sugiura H, Ishiyama H and Sasaki K. 2003. Purification and properties of an aminopeptidase from the mid-gut gland of scallop (Patinopecten yessoensis). Comp Biochem Physiol 136B, 935-942. https://doi.org/10.1016/j.cbpc.2003.09.008.
40 Umetsu H and Ichishima E. 1988. Debittering mechanism of bitter peptides from soybean protein by wheat carboxypeptidase. J Jpn Soc Food Sci Technol 35, 440-447. https://doi.org/10.3136/nskkk1962.35.440.
41 Vo VT, Kusakabe I and Murakami K. 1983. Purification and some properties of two aminopeptidases from sardines. Agric Biol Chem 47, 2453-2459.   DOI
42 Zwijnenberg HJ, Kemperman AJB, Boerrigter ME, Lotz M, Dijksterhuis JF, Poulsen PE and Koops GH. 2002. Native protein recovery from potato fruit juice by ultrafiltration. Desalination 144, 331-334. https://doi.org/10.1016/s0011-9164(02)00338-7.   DOI
43 Chiou TK, Matsui T and Konosu S. 1988. Purification and properties of an aminopeptidase from mullet, Mugil cephalus, roe. Agric Biol Chem 52, 235-242. https://doi.org/10.1271/bbb1961.52.235.   DOI
44 Bezerra RS, Lins EJF, Alencar RB, Paiva PMG, Chaves MEC, Coelho LCBB and Carvalho LB Jr. 2005. Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochem 40, 1829-1834. https://doi.org/10.1016/j.procbio.2004.06.066.   DOI
45 Bumberger E and Belitz HD. 1993. Bitter taste of enzymic hydrolysates of casein. Z Lebensm Unter Forsch 197, 14-19. https://doi.org/10.1007/bf01202693.
46 Carr JW, Lougheed TC and Baker BE. 1956. Studies on protein hydrolysis. IV. Further observations on the taste of enzymic protein hydrolysates. J Sci Food Agric 7, 629-637. https://doi.org/10.1002/jsfa.2740071002.   DOI
47 Cho MJ, Unklebay N, Heieh F and Clarke AD. 2004. Hydrophobicity of bitter peptides from soy protein hydrolysatees. J Agric Food Chem 52, 5895-5901. https://doi.org/10.1021/jf0495035.   DOI
48 Clegg, KM and Lim CL. 1974. The structure of a bitter peptide derived from casein by digestion with papain. J Diary res 41, 383-387. https://doi.org/10.1017/s0022029900019695.
49 Dawson RMC, Elliot DC, Elliot WH and Jones KM. 1986. Data for biochemical research, 3rd eds. Oxford Univ Press, Oxford, U.K., 417-441.