Browse > Article
http://dx.doi.org/10.5657/KFAS.2019.0656

Comparison of Sedimentary Environmental Characteristic of Tidal Flats on the West Coast of Korea Depending on the Habitation of Mud Shrimp Upogebia major  

Jeon, Seung Ryul (Tidal Flat Research Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science)
Hong, SokJin (Tidal Flat Research Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science)
Choi, Yonghyeon (Tidal Flat Research Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science)
Cho, Yoon Sik (Marine Environmental Impact Assessment Center, National Institute of Fisheries Science)
Song, Jae-Hee (Tidal Flat Research Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.52, no.6, 2019 , pp. 656-665 More about this Journal
Abstract
Environmental monitoring was conducted to identify the characteristics and patterns of sedimentary environments of tidal flats in 12 areas on the west coast of Korea. The habitat of the mud shrimp Upogebia major contained higher organic and mud contents compared to the habitat of the manila clam Ruditapes philippinarum. In particular, the mud content increased from 84.38% to 89.18% in the Seongam-4 area, where the mud shrimp and manila clam coexist, and the mean grain size exhibited a finer particle size, from 5.48 Φ to 5.80 Φ. In the mud shrimp habitat, the sediment mud content was > 60% and the mean grain size was > 5 Φ. Additionally, the mud shrimp only inhabited open coast tidal flat areas. The management of shellfish aquaculture farms by physical methods should be continued based on comparison of the sedimentary environments in the Boryeong and Seongam areas in response to the damage to the mud shrimp habitat.
Keywords
Tidal flat; Sedimentary environment; Shellfish farm management; Ruditapes philippinarum; Upogebia major;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Suchanek TH, Colin PL, McMurtry and Suchanek CS. 1986. Bioturbation and redistribution of sediment radionuclides in Enewetak Atoll lagoon by callianassid shrimp: biological aspects. Bull Mar Sci 38, 144-154.
2 Wynberg RP and Branch GM. 1991. An assessment of baitcollecting for callianassa kraussi Stebbing in Langebaan lagoon, Western Cape, and of associated avian predation. S Afr J Marine Sci 11, 141-152. https://doi.org/10.2989/025776191784287592.   DOI
3 Yoo JW, IS Hwang and JS Hong. 2007. Inference models for tidal flat elevation and sediment grain size: A preliminary approach on tidal flat macrobenthic community, Ocean Sci J 42, 69-79. https://doi.org/10.1007/BF03020875.   DOI
4 Zeibis W, Forster S, Huettel M and Jorgensen BB. 1996. Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature 382, 619-622. https://doi.org/10.1038/382619a0.   DOI
5 Simenstad CA and Fresh KL. 1995. Influence of intertidal aquaculture on benthic communities in Pacific Northwest Estuaries: Scales of Disturbance. Estuaries 18, 43-70. https://doi.org/10.2307/1352282.   DOI
6 Dworschak PC. 1981. The pumping rates of the burrowing shrimp Upogebia pusilla (Petagna) (Decapoda: Thalassinidea). I. The burrows. Mar Ecol 52, 25-35. https://doi.org/10.1016/0022-0981(81)90168-4.   DOI
7 Choi K. 2014. Morphology, sedimentology and stratigraphy of Korean tidal flats - Implications for future coastal managements. Ocean Coast Manag 102, 437-448. https://doi.org/10.1016/j.ocecoaman.2014.07.009.   DOI
8 Haan WD. 1841. Crustacea: In: Siebold PF. eds. Fauna Japonica sive descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, qui summun in India Batava imperium tenent, suspecto, annis 1823-1830 Collegit, Notis, Observationibus et Adumbrationibus Illustravit (Crustacea). Lugduni-Batavorum, Leiden, 243.
9 Dumbauld BR, Armstrong DA and Feldman KL. 1996. Life-history characteristics of two sympatric thalassinidean shrimps, Neotrypaea californiensis and Upogebia pugettensis with implications for oyster culture. J Crustacean Biol 16, 689-708. https://doi.org/10.1163/193724096X00784.   DOI
10 Feldman KL, Armstrong DA, Dumbauld BR, DeWitt TH and Doty DC. 2000. Oysters, crabs, and burrowing shrimp: Review of an environmental conflict over aquatic resources and pesticide use in Washington State's (USA) coastal estuaries. Estuaries 23(2), 141-176. https://doi.org/10.2307/1352824.   DOI
11 Folk RL. 1980. Petrology of sedimentary rocks. Hemphill Publishing Company, Austin, Texas, U.S.A., 185.
12 Griffen BD, DeWit TH and Langdon C. 2004. Particle removal rates by the mud shrimp Upogebia pugettensis, its burrow, and a commensal clam: effects on estuarine phytoplankton abundance. Mar Ecol Prog Ser 269, 223-236. https://doi.org/10.3354/meps269223.   DOI
13 Lee HJ. 2006. Changing phases in coastal environment of the Saemangeum area by tideland reclamation project, midwest of Korea. Ocean Polar Res 28, 353-360. https://doi.org/10.4217/OPR.2006.28.3.353.   DOI
14 Kinoshita K, Wada M, Kogure K and Furota T. 2008. Microbial activity and accumulation of organic matter in the burrow of the mud shrimp, Upogebia major (Crustacea: Thalassinidea). Mar Biol 153, 277-283. https://doi.org/10.1007/s00227-007-0802-1.   DOI
15 Koh CH and JS Khim. 2014. The Korean tidal flat of the Yellow Sea: Physical setting, ecosystem and management. Ocean Coast Manag 102, 398-414. https://doi.org/10.1016/j.ocecoaman.2014.07.008.   DOI
16 Lee CH and Yu HJ. 2000. Establishment of environmental quality guidelines for surface sediments. Korea Environment Institute, Seoul, Korea, 1-150.
17 Loosanoff VL and Tommers FD. 1948. Effect of suspended silt and other substances on rate of feeding of oysters. Science 107, 69-70. https://doi.org/10.1126/science.107.2768.69.   DOI
18 Marin I, Korn OM, Kornienko ES. 2011. Symbiotic crab Sestrostoma balssi (shenm 1932) (Varunidae: Gaeticinae) from Vostok Bay, Sea of Japan: A new species for the fauna of Russia, Russ J Mar Biol 37, 509-510. https://doi.org/10.1134/S1063074011.   DOI
19 Miyake S, 1982. Illustrated Encyclopedia of Japanese Macro-Crustaceans (I). Hoikusha Publishing Company, Osaka, Japan, 261.
20 MOF (Ministry of Oceans and Fisheries). 2013. Marine environment standard methods. MOF, Daejeon, Korea, 495.
21 NFRDI (National Fisheries Research and Development Institute). 2012. 2/2 Technical report of national fisheries research & development institute. NFRDI, Busan, Korea, 1295.
22 Kim D, DI Lim, SK Jeon and HS Jung, 2005. Chemical characteristics and eutrophication in Cheonsu Bay, West Coast of Korea. Ocean Polar Res 27, 45-58. https://doi.org/10.4217/OPR.2005.27.1.045.   DOI
23 Bidegain G, Bárcena JF, García A and Juanes JA. 2015. Prediction coexistence and predominance patterns between the introduced Manila clam (Ruditapes philippinarum) and the European native clam (Ruditapes decussatus). Estuar Coast Shelf S 152, 162-172. https://doi.org/10.1016/j.ecss.2014.11.018.   DOI
24 Hong JS. 2013. Biology of the Mud Shrimp Upogebia major (de Haan, 1841), with particular reference to pest management for shrimp control in Manila clam bed in the West Coast of Korea. Ocean Polar Res 35, 323-349. https://doi.org/10.4217/OPR.2013.35.4.323.   DOI
25 Itani G. 2001. Silent biodiversity in the burrows-animals associated with the mud shrimp. Benthos Res 56, 50-53.
26 Itoh H and Nishida S. 2002. A new species of Hemicyclops (Copepoda, Poecilostomatoida) from burrows of the mud shrimp Upogebia major in an estuarine mud-flat in Tokyo Bay, Japan. Hydrobiologia 474, 139-146. https://doi.org/10.1023/A:1016509102177.   DOI
27 Johnson GE and Gonor JJ. 1982. The tidal exchange of Callianassa californiensis (Crustacea, Decapoda) larvae between the ocean and Salmon River estuary, Oregon. Estuar Coast Shelf S 14, 501-516. https://doi.org/10.1016/S0302-3524(82)80073-X.   DOI
28 Kim SY and Ha JS. 2001. Sedimentary facies and environmental changes of the Nakdong River estuary and adjacent coastal area. J Korean Fish Soc 34, 268-278.
29 NIFS (National Institute of Fisheries Science). 2016. 1/2 Technical report of national institute of fisheries science. NIFS, Busan, Korea, 725.
30 Kinoshita K. 2002. Burrow structure of the mud shrimp Upogebia major (Decapoda: Thalassinidea: Upogebiidae). J Crust Biol 22, 474-480. https://doi.org/10.1163/20021975-99990255.   DOI
31 Song JH, HM Ahn, HD Jeung, SO Chung and HW Kang. 2019. Growth of two mud shrimps (Upogebia major and Austinogebia wuhsienweni) settled in Boryeong and Hongseong tidal flat. Korean J Environ Biol 37, 217-227.   DOI
32 Peterson CH, 1984. Does a rigorous criterion for environmental identity preclude the existence of multiple stable points? Am Nat 124, 127-133. https://doi.org/10.1086/284256.   DOI
33 Posey MH, Dumbauld BR and Armstrong DA. 1991. Effects of a burrowing mud shrimp, Upogebia pugettensis (Dana) on abundance of macro-infauna. J Exp Mar Biol Ecol 148, 283-294. https://doi.org/10.1016/0022-0981(91)90088-E.   DOI
34 Ricketts EF, Calvin J, Hedgpeth JW and Phillips DW. 1985. Between Pacific Tides, 5th Edition, Stanford University Press, Stanford, California, CA, U.S.A., 632.
35 Rowden AA and Jones MB. 1993. Critical evaluation of sediment turnover estimates for Callianassidae (Decapoda: Thallassinidea). J Exp Mar Biol Ecol 173, 265-272. https://doi.org/10.1016/0022-0981(93)90057-U.   DOI
36 Ryu J, Nam J, Park J, Kwon BO, Lee JH, Song SJ, Hong S, Chang WK and Khim JS. 2014. The Saemangeum tidal flat: Long-term environmental and ecological changes in marine benthic flora and fauna in relation to the embankment. Ocean Coast Manag 102, 559-571. https://doi.org/10.1016/j.ocecoaman.2014.07.020.   DOI
37 Sato M and CH Koh. 2004. Biological richness of the Asian tidal flats and its crisis by human impacts. In: Hong SK, Lee JA, Ihm BS, Farina A, Son Y, Kim ES, Choe JC. Eds. Ecological issues in a changing world. Status, response and strategy. Kluwer Academic Publishers, Dordrecht, Netherlands, 135-155. https://doi.org/10.1007/978-1-4020-2689-8_9.