Browse > Article
http://dx.doi.org/10.5657/KFAS.2018.0095

Evaluation of Candidate Housekeeping Genes for the Normalization of RT-qPCR Analysis using Developing Embryos and Prolarvae in Russian Sturgeon Acipenser gueldenstaedtii  

Nam, Yoon Kwon (Department of Marine Bio-Materials and Aquaculture, Pukyong National University)
Lee, Sang Yoon (Department of Marine Bio-Materials and Aquaculture, Pukyong National University)
Kim, Eun Jeong (Department of Marine Bio-Materials and Aquaculture, Pukyong National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.51, no.1, 2018 , pp. 95-106 More about this Journal
Abstract
To evaluate appropriate reference genes for the normalization of quantitative reverse transcription PCR (RT-qPCR) data with embryonic and larval samples from Russian sturgeon Acipenser gueldenstaedtii, the expression stability of eight candidate housekeeping genes, including beta-actin (ACTB), elongation factor-1A (EF1A), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone 2A (H2A), ribosomal protein L5 (RPL5), ribosomal protein L7 (RPL7), succinate dehydrogenase (SDHA), and ubiquitin-conjugating enzyme E2 (UBE2A), were tested using embryonic samples from 12 developmental stages and larval samples from 11 ontogenic stages. Based on the stability rankings from three statistic software packages, geNorm, NormFinder, and BestKeeper, the expression stability of the embryonic subset was ranked as UBE2A>H2A>SDHA>GAPDH>RPL5>EF1A>ACTB>RPL7. On the other hand, the ranking in the larval subset was determined as UBE2A>GAPDH>SDHA>RPL5>RPL7>H2A>EF1A>AC TB. When the two subsets were combined, the overall ranking was UBE2A>SDHA>H2A>RPL5>GAPDH>EF1A>ACTB>RPL7. Taken together, our data suggest that UBE2A and SDHA are recommended as suitable references for developmental and ontogenic samples of this sturgeon species, whereas traditional housekeepers such as ACTB and GAPDH may not be suitable candidates.
Keywords
Russian sturgeon; Acipenser gueldenstaedtii; RT-qPCR assay; normalization control; reference genes;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Luchsinger C, Arias ME, Vargas T, Paredes M, Sanchez R and Felmer R. 2014. Stability of reference genes for normalization of reverse transcription quantitative real-time PCR (RT-qPCR) data in bovine blastocysts produced by IVF, ICSI and SCNT. Zygote 22, 505-512. https://doi.org/10.1017/S0967199413000099.   DOI
2 Lopez-Landavery EA, Portillo-Lopez A, Gallardo-Escarate C and Rio-Portilla MAD. 2014. Selection of reference genes as internal controls for gene expression in tissues of red abalone Haliotis rufescens (Mollusca, Vetigastropoda; Swainson, 1822). Gene 549, 258-265. https://doi.org/10.1016/j.gene.2014.08.002.   DOI
3 Mitter K, Kotoulas G, Magoulas A, Mulero V, Sepulcre P, Figueras A, Novoa B and Sarropoulou E. 2009. Evaluation of candidate reference genes for QPCR during ontogenesis and of immune-relevant tissues of European seabass (Dicentrarchus labrax). Comp Biochem Physiol B 153, 340-347. https://doi.org/10.1016/j.cbpb.2009.04.009.   DOI
4 Omondi BA, Latorre-Estivalis JM, Oliveira IHR, Ignell R and Lorenzo MG. 2015. Evaluation of reference genes for insect olfaction studies. Parasit Vectors 22, 243. https://doi.org/10.1186/s13071-015-0862-x.   DOI
5 Overgard AC, Nerland AH and Patel S. 2010. Evaluation of potential reference genes for real time RT-PCR studies in Atlantic halibut (Hippoglossus hippoglossus L.); during development, in tissues of healthy and NNV-injected fish, and in anterior kidney leucocytes. BMC Mol Biol 11, 36. https://doi.org/10.1186/1471-2199-11-36.   DOI
6 Park CH and Chapman FA. 2005. An extender solution for the short-term storage of sturgeon semen. North Am J Aquacult 67, 52-57. https://doi.org/10.1577/FA03-068.1.   DOI
7 Park CH, Lee SY, Kim DS and Nam YK. 2013a. Embryonic development of Siberian sturgeon Acipenser baerii under hatchery conditions: an image guide with embryological descriptions. Fish Aquat Sci 16, 15-23. https://dx.doi.org/10.5657/FAS.2013.0015.   DOI
8 Park CH, Lee SY, Kim DS and Nam YK. 2013b. Effects of incubation temperature on egg development, hatching and pigment plug evacuation in farmed Siberian sturgeon Acipenser baerii. Fish Aquat Sci 16, 25-34. https://dx.doi.org/10.5657/FAS.2013.0025.   DOI
9 Pfaffl MW, Tichopad A, Prgomet C and Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Best-Keeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26, 509-515. https://doi.org/10.1023/B:BILE.0000019559.84305.47.   DOI
10 Reece KS, McElroy D and Wu R. 1992. Function and evolution of actins. Evol Biol 26, 1-34. https://doi.org/10.1007/978-1-4615-3336-8_1.   DOI
11 Reisler E and Egelman EH. 2007. Actin structure and function: what we still do not understand. J Biol Chem 282, 36133-36137. https://doi.org/10.1074/jbc.R700030200.   DOI
12 Schmittgen TD and Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3, 1101-1108. https://doi.org/10.1038/nprot.2008.73.   DOI
13 Souza AFD, Brum IS, Neto BS, Berger M and Branchini G. 2013. Reference gene for primary culture of prostate cancer cells. Mol Biol Rep 40, 2955-2962. https://doi.org/10.1007/s11033-012-2366-5.   DOI
14 Steinhauser CB, Wing TT, Gao H, Li X, Burghardt RC, Wu G, Bazer FW and Johnson GA. 2017. Identification of appropriate reference genes for qPCR analyses of placental expression of SLC7A3 and induction of SLC5A1 in porcine endometrium. Placenta 52, 1-9. https://dx.doi.org/10.1016/j.placenta.2017.02.003.   DOI
15 Taylor DA, Thompson EL, Nair SV and Raftos DA. 2013. Differential effects of metal contamination on the transcript expression of immune- and stress-response genes in the Sydney rock oyster, Saccostrea glomerata. Environ Pollut 178, 65-71. https://doi.org/10.1016/j.envpol.2013.02.027.   DOI
16 Hellemans J, Mortier G, De Paepe A, Speleman F and Vandesompele J. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8, R19. https://doi.org/10.1186/gb-2007-8-2-r19.   DOI
17 Udvardi MK, Czechowski T and Scheible WR. 2008. Eleven golden rules of quantitative RT-PCR. Plant Cell 20, 1736-1737. https://doi.org/10.1105/tpc.108.061143.   DOI
18 Yan X, Dong X, Zhang W, Yin H, Xiao H, Chen P and Ma XF. 2014. Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica. PLoS One 12, e104124. https://doi.org/10.1371/journal.pone.0104124.   DOI
19 Yuan M, Lu Y, Zhu X, Wan H, Shakeel M, Zhan S, Jin BR and Li J. 2014. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse transcription quantitative PCR. PLoS One 9, e86503. https://doi.org/10.1371/journal.pone.0086503.   DOI
20 Zhang Z and Hu J. 2007. Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative real-time RT-PCR. Toxicol Sci 95, 356-368. https://doi.org/10.1093/toxsci/kfl161.   DOI
21 Infante C, Matsuoka MP, Asensio E, Canavate JP, Reith M and Manchado M. 2008. Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. BMC Mol Biol 9, 28. https://doi.org/10.1186/1471-2199-9-28.   DOI
22 Lee SY and Nam YK. 2016. Evaluation of reference genes for RT-qPCR study in abalone Haliotis discus hannai during heavy metal overload stress. Fish Aquat Sci 19, 21. https://doi.org/10.1186/s41240-016-0022-z.   DOI
23 Jaramillo ML, Ammar D, Quispe RL, Guzman F, Margis R, Mazari EM and Muller YMR. 2017. Identification and evaluation of reference genes for expression studies by RT-qPCR during embryonic development of the emerging model organism, Macrobrachium olfersii. Gene 598, 97-106. https://doi.org/10.1016/j.gene.2016.11.001.   DOI
24 Kim KY and Nam YK. 2008. Evolutionary history of two paralogous glyceraldehyde 3-phosphate dehydrogenase genes in teleosts. J Fish Sci Tech 11, 177-181. http://dx.doi.org/10.5657/fas.2008.11.3.177.   DOI
25 Lee SY, Kim DS and Nam YK. 2013. Genomic organization, tissue distribution and developmental expression of glyceraldehyde 3-phosphate dehydrogenase isoforms in mud loach Misgurnus mizolepis. Fish Aquat Sci 16, 291-301. http://dx.doi.org/10.5657/FAS.2013.0291.   DOI
26 Lopez MD and Samuelsson T. 2008. Early evolution of histone mRNA 3' end processing. Bioinformatics 14, 1-10. https://doi.org/10.1261/rna.782308.   DOI
27 Dettlaff TA, Ginsburg AS and Schmalhausen OI. 1993. Sturgeon Fishes-Developmental Biology and Aquaculture. Springer-Verlag, Berlin Heidelberg, Germany, 49-196.
28 Gisbert E and Ruban GI. 2003. Ontogenic behavior of Siberian sturgeon, Acipenser baerii: a synthesis between laboratory tests and field data. Environ Biol Fishes 67, 311-319. https://doi.org/10.1023/A:1025851502232.   DOI
29 Gisbert E and Williot P. 1997. Larval behaviour and effect of the timing of initial feeding on growth and survival of Siberian sturgeon (Acipenser baerii) larvae under small scale hatchery production. Aquaculture 156, 63-76. https://doi.org/10.1016/S0044-8486(97)00086-0.   DOI
30 Cooper MS and Virta VC. 2007. Evolution of gastrulation in the rayfinned (Actinopterygian) fishes. J Exp Zool B Mol Dev Evol 308, 591-608. https://doi.org/10.1002/jez.b.21142.   DOI
31 Doak SH and Zair Z. 2012. Real-time reverse-transcription polymerase chain reaction: technical considerations for gene expression analysis. In: Genetic toxicology: principles and methods, methods in molecular biology. Parry JM and Parry EM, eds. Springer, New York, U.S.A., 251-270. https://doi.org/10.1007/978-1-61779-421-6_13.   DOI
32 Fernandes JMO, Mommens M, Hagen O, Babiak I and Solberg C. 2008. Selection of suitable reference genes for realtime PCR studies of Atlantic halibut development. Comp Biochem Physiol B 150, 23-32. https://doi.org/10.1016/j.cbpb.2008.01.003.   DOI
33 Garcia-Fernandez P, Castellanos-Martinez S, Iglesias J, Otero JJ and Gestal C. 2016. Selection of reliable reference genes for RT-qPCR studies in Octopus vulgaris paralarvae during development and immune-stimulation. J Invert Pathol 138, 57-62. https://doi.org/10.1016/j.jip.2016.06.003.   DOI
34 Bolker JA. 1993. The mechanism of gastrulation in the white sturgeon. J Exp Zool 266, 132-145. https://doi.org/10.1002/jez.1402660207.   DOI
35 Ahi EP, Guobrandsson J, Kapralova KH, Franzdottir SR, Snorrason SS, Maier VH and Jonsson ZO. 2013. Validation of reference genes for expression studies during craniofacial development in Arctic charr. PLoS One 8, e66389. https://doi.org/10.1371/journal.pone.0066389.   DOI
36 Andersen CL, Jensen JL and Orntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64, 5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496.   DOI
37 Birstein VJ, Hanner R and DeSalle R. 1997. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fishes 48, 127-155. https://doi.org/10.1023/A:1007366100353.   DOI
38 Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J and Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative realtime PCR experiments. Clin Chem 55, 611-622. https://doi.org/10.1373/clinchem.2008.112797.   DOI
39 Cho YS, Lee SY, Kim KH and Nam YK. 2008. Differential modulations of two glyceraldehyde 3-phosphate dehydrogenase mRNAs in response to bacterial and viral challenges in a marine teleost Oplegnathus fasciatus (Perciformes). Fish Shellfish Immunol 25, 472-476. https://doi.org/10.1016/j.fsi.2008.07.007.   DOI