Browse > Article
http://dx.doi.org/10.5657/KFAS.2018.0054

Changes in Reproductive Characteristics of Chameleon Goby Tridentiger trigonocephalus by Carbon Dioxide Exposure  

Hwang, In Joon (Aquaculture Industry Division, West Sea Fisheries Research Institute)
Choi, Sang Jun (Bioresources Team, Korea Fisheries Resources Agency)
Baek, Hea Ja (Department of Marine Biology, Pukyong National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.51, no.1, 2018 , pp. 54-63 More about this Journal
Abstract
We investigated the effect of $CO_2$ exposure on the reproductive process of chameleon goby Tridentiger trigonocephalus. Rearing aquaria were exposed for 90 days to $CO_2$ gas through diffuser connected with pH controller maintaining at pH 7.2 ($156.31{\pm}7.90ppm$) in low treatment, and at pH 6.5 ($274.17{\pm}6.51ppm$) in high treatment. $CO_2$ treatment had no significant effects on survival rates although the value was decreased compared to the controls. In female fish, $CO_2$ treatment had no significant effects on gonadosomatic index (GSI), hepatosomatic index (HSI) and condition factor (CF). However, high $CO_2$ treatment decreased HSI and CF in males significantly compared to the controls (P<0.05). The spawning occurrence was 6 times in the low level $CO_2$ treatment, and 4 times in the high level $CO_2$ treatment although only once in the controls. For the histological observations, there was no significant difference in $CO_2$ treatments. However, in male fish, $CO_2$ treatment delayed the formation of sperm from spermatid compared to controls. These results suggest $CO_2$ may disrupt reproductive process by delaying gametogenesis in chameleon goby and it was more sensitive in males.
Keywords
Carbon dioxide; Chameleon goby; Reproduction; Tridentiger trigonocephalus;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Frommel AY, Stiebens V, Clemmesen C and Havenhand J. 2010. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosci Discuss 7, 5859-5872. https://doi.org/10.5194/bg-7-3915-2010.   DOI
2 Hwang IJ and Baek HJ. 2013. Reproductive cycle of chameleon goby, Tridentiger trigonocephalus in the southern coastal waters of Korea. Dev Reprod 17, 353-361. https://doi.org/10.12717/DR.2013.17.4.3513.   DOI
3 Health AG. 1995. Water Pollution and Fish Physiology. 2nd ed. CRC Lewis Publishers, Boca Raton, Florida, U.S.A.
4 Heuer RM and Grosell M. 2014. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol-Reg I 307, R1061-R1084. https://doi.org/ 10.1152/ajpregu.00064.2014.   DOI
5 Hinton DE, Segner H and Braunbeck T. 2001. Toxic responses of the liver. In: Target Organ Toxicity in Marine and Freshwater Teleosts. Schlenk D and Benson WH, eds. Taylor & Francis, London. UK, 224-268.
6 Hoffman CL, Higham JP, Mas-Rivera A, Ayala JE and Maestripieri D. 2010. Terminal investment and senescence in rhesus macaques (Macaca mulatta) on Cayo Santiago. Behav Ecol 21, 972-978. https://doi.org/10.1093/beheco/arq098.   DOI
7 Ishimatsu A, Kikkawa T, Hayashi M, Lee KS and Kita J. 2004. Effects of $CO_2$ on marine fish: Larvae and adults. J Oceanogr 60, 731-741. https://doi.org/10.1007/s10872-004-5765-y.   DOI
8 Ishimatsu A, Hayashi M, Lee KS, Kikkawa T and Kita J. 2005. Physiological effects on fishes in a high-$CO_2$ world. J Geophys Res 110, C09S09. https://doi.org/10.1029/2004JC002564.   DOI
9 Langenbuch M and Portner HO. 2003. Energy budget of hepatocytes from Antarctic fish (Pachycara brachycephalum and Lepidonotothen kempi) as a function of ambient $CO_2$: pH-dependent limitations of cellular protein biosynthesis?. J Exp Biol 206, 3895-3903. https://doi.org/10.1242/jeb.00620.   DOI
10 Ishimatsu A, Hayashi M and Kikkawa T. 2008. Fishes in high-CO2, acidified oceans. Mar Ecol Prog Ser 373, 295-302. https://doi.org/0.3354/meps07823.   DOI
11 Milazzo M, Cattano C, Alonzo SH, Foggo A, Gristina M, Rodolfo-Metalpa R, Sinopoli M, Spatafora D and Stiver KA. 2016. Ocean acidification affects fish spawning but not paternity at $CO_2$ seeps. Proc R Soc Lon B Biol 283, 20161021. https://doi.org/10.1098/rspb.2016.1021.   DOI
12 Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M and Portner HO. 2009. Physiological basis for high $CO_2$ tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?. Biogeosciences 6, 2313-2331. https://doi.org/10.5194/bg-6-2313-2009.   DOI
13 Miller GM, Watson SA, McCormick MI and Munday PL. 2013. Increased $CO_2$ stimulates reproduction in a coral reef fish. Glob Change Biol 19, 3037-3045. https://doi.org/10.1111/gcb.122.   DOI
14 Inaba K, Dreanno C, and Cosson J. 2003. Control of flatfish sperm motility by $CO_2$ and Carbonic anhydrase. Cell Motil Cystoskeleton 55, 174-187. https://dor.org/10.1002/cm.10119.   DOI
15 Esbaugh AJ, Heuer R and Grosell M. 2012. Impacts of ocean acidification on respiratory gas exchange in a marine teleost, Opsanus beta. J Comp Physiol B 182, 921-934. https://doi.org/10.1007/s00360-012-0668-5.   DOI
16 Fivelstad S, Olsen AB, Asgard T, Baeverfjord G, Rasmussen T, Vindhelm T and Stefansson S. 2003. Long-term sublethal effects of carbon dioxide on Atlantic salmon smolts (Salmo salar L.): ion regulation, haematology, element composition, nephrocalcinosis and growth parameters. Aquaculture 215, 301-319. https://doi.org/10.1016/S0044-8486(02)00048-0.   DOI
17 Forsgren E, Dupont S, Jutfelt F and Amundsen T. 2013. Elevated $CO_2$ affects embryonic development and larval phototaxis in a temperate marine fish. Ecol Evol 3, 3637-3646. https://doi.org/10.1002/ece3.709.   DOI
18 Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B and Sorci G. 2003. Assessing the cost of mounting an immune response. Amer Nat 161, 367-379. https://doi.org/10.1086/346134.   DOI
19 Brauner CJ and Baker DW. 2009. Patterns of acid-base regulation during exposure to hypercarbia in fishes. In: Cardi-Respiratory Control in Vertebrates. Glass ML and Woods SC, eds. Springer, Berlin, Germany, 43-63.
20 Dupont S, Dorey N and Thorndyke M. 2010. What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar Coast Shelf Sci 89, 182-185. https://doi.org/10.1016/j.ecss.2010.06.013.   DOI
21 Esbaugh AJ. 2017. Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. J Comp Physiol B 188, 1-13. https://doi.org.10.1007/s00360-017-1105-6.   DOI
22 Fivelstad S, Olsen AB, Kloften H, Ski H and Stefansson S. 1999. Effects of carbon dioxide on Atlantic salmon (Salmo salar L) smolts at constant pH in bicarbonate rich freshwater. Aquaculture 178, 171-187. https://doi.org/10.1016/S0044-8486(99)00125-8.   DOI
23 Chung MK. 1977. The fishes of Korea. Inji-sa, Seoul, Korea.
24 Browman HI. 2016. Applying organized scepticism to ocean acidification research. ICES J Mar Sci 73, 529-536. https://doi.org/10.1093/icesjms/fsw010.   DOI
25 Caldeira K and Wickett ME. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and oceans. J Geophys Res 110, C09504. https://doi.org/10.1029/2004JC002671.   DOI
26 Cho HC, Hwang IJ and Baek HJ. 2014. Histological analysis of early gonadal development and sex differentiation in chameleon goby, Tridentiger trigonocephalus. Dev Reprod 18, 51-56. https://doi.org/10.2717/DR.2014.18.1.051.   DOI
27 Pankhurst NW and Munday PL. 2011. Effects of climate change on fish reproduction and early life history stages. Mar Freshwater Res 62, 1015-1026. https://doi.org/10.1071/MF10269.   DOI
28 Portner HO, Langenbuch M and Reipschlager A. 2004. Biological impact of elevated ocean $CO_2$ concentrations: lessons from animal physiology and earth history. J Oceanogr 60, 705-718. https://doi.org/10.1007/s10872-004-5763-0.   DOI
29 Myers MS, Rhodes LD and McCain BB. 1987. Pathologic anatomy and pattern of occurrence of hepatic neoplasms, putative preneoplastic lesions and other idiopathic hepatic conditions in English sole (Parophrys vetulus) from Puget Sound, Washington. J Natl Cancer Inst 78, 333-363. https://doi.org/10.1093/jnci/78.2.333.   DOI
30 Nielsen ML and Holman L. 2012. Terminal investment in multiple sexual signals: immune-challenged males produce more attractive pheromones. Funct Ecol 26, 20-28. https://doi.org/10.1111/j.1365-2435.2011.01914.x.   DOI
31 Wolf JC and Wolfe M. 2005. A brief overview of nonneoplastic hepatic toxicity in fish. Toxicol Pathol 33, 75-85. https://doi.org/10.1080/01926230590890187.   DOI
32 Schade FM, Clemmesen C and Wegner KM. 2014. Within- and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (Gasterosteus aculeatus). Mar Biol 161, 1667-1676. https://doi.org/10.1007/s00227-014-2450-6.   DOI
33 Schreck CB. 2010. Stress and fish reproduction: The roles of allostasis and hormesis. Gen Comp Endocrinol 165, 549-556. https://doi.org/10.1016/j.ygcen.2009.07.004.   DOI
34 Sokolova IM, Frederich M, Bagwe R, Lannig G and Sukhotin AA. 2012. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrate. Mar Environ Res 79, 1-15. https://doi.org/10.1016/j.marenvres.2012.04.003.   DOI
35 Costantini D, Metcalfe NB and Monaghan P. 2010. Ecological processes in a hermetic framework. Ecol Lett 13, 1435-1447. https://doi.org/10.1111/j.1461-0248.2010.01531.x.   DOI