Browse > Article
http://dx.doi.org/10.5657/KFAS.2016.0474

Comparison of Fatty Acid Composition of Wild and Cultured Sea Cucumber Apostichopus japonicus  

Jin, Feng (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Md, Anisuzzaman (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Jeong, U-Cheol (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Choi, Jong-Kuk (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Yu, Hak-Sun (Department of Parasitology, School of Medicine, Pusan National University)
Kang, Seung-Wan (Gyeongsangnam-Do Fisheries Resources Research Institute)
Kang, Seok-Joong (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.49, no.4, 2016 , pp. 474-485 More about this Journal
Abstract
This study compared the fatty acid composition of wild and cultured specimens of the sea cucumber Apostichopus japonicus. We extracted total lipids from the specimens and determined their fatty acid compositions through capillary gas chromatography, resulting in the identification of 53 fatty acids. We found that wild sea cucumbers were rich in palmitoleic (C16:1n-7) and eicosapentaenoic acid (C20:5n-3), whereas cultured specimens were rich in eicosenoic (C20:1n-9) and arachidonic acid (C20:4n-6). In both types of sea cucumbers, the highest percentage of polyunsaturated fatty acids (PUFA) consisted of polar lipids (PL), followed by total lipids (TL) and neutral lipids (NL). Cultured sea cucumbers contained a higher percentage of total lipids (TL) than wild sea cucumbers did, whereas there was no significant difference between the two groups in the percentages of neutral (NL) and polar lipids (PL).
Keywords
Sea cucumber; Apostichopus japonicus>; Fatty acid; Total lipid; Polar lipids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ackman RG. 1969. Temperature effects in the calculation of equivalent chain length values for multiple-branched fatty acid esters and ketones on polar and non-polar open tubular columns. J Chromato A 42, 170-175. http://dx.doi.org/10.1016/j.aquaculture.2006.01.029.   DOI
2 Baars T. 2013. Milk consumption, raw and general, in the discussion on health or hazard. J Nut Eco Food Res 1, 91-107. http://dx.doi.org/10.1166/jnef.2013.1027.   DOI
3 Bechtel PJ, Oliveira A, Demir N and Smiley S. 2013. Chemical composition of the giant red sea cucumber, Parastichopus californicus, commercially harvested in Alaska. Food Sci Nut 1, 63-73. http://dx.doi.org/10.1002/fsn3.12.   DOI
4 Black PN and Sharpe S. 1997. Dietary fat and asthma: is there a connection? Eur Respir J 10, 6-12. http://dx.doi.org/10.1183/09031936.97.10010006.   DOI
5 Bligh EG and Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiolo 37, 911-917. http://dx.doi.org/10.1139/o59-099.   DOI
6 Bousquet J, Khaltaev N, Bousquet J and Khaltaev N. 2008. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. J Pharmacy Tec 24, 122-122.
7 Chen J. 2005. Present status and prospects of sea cucumber industry in China. FAO Fish Tec Paper 436, 25-38.
8 Chilmonczyk BA, Salmun LM, Megathlin KN, Neveux LM, Palomaki GE, Knight GJ and Haddow JE. 1993. Association between exposure to environmental tobacco smoke and exacerbations of asthma in children. New En J Med 328, 1665-1669.   DOI
9 Conand C. 2004. Present status of world sea cucumber resources and utilisation: an international overview. FAO Fish Tec Paper 463, 35-48.
10 Crain EF, Walter M, O'Connor GT, Mitchell H, Gruchalla RS and Kattan M. 2002. Home and allergic characteristics of children with asthma in seven U.S. urban communities and design of an environmental intervention: The Inner-City Asthma Study. E Health Per 110, 939-946.   DOI
11 Duncan DB. 1955. Multiple range and multiple F tests. Biometrics 11, 1-42. http://dx.doi.org/10.2307/3001478.   DOI
12 Fredalina BD, Ridzwan BH, Zainal Abidin AA, Kaswandi MA, Zaiton H, Zali I and Kittakoop P. 1999. Fatty acid composition in local sea cucumber, Stichopus chloronotus, for wound healing. Gen Pharmacol 33, 337-340. http://dx.doi.org/10.1016/S0306-3623(98)00253-5.   DOI
13 Gao, QF, Wang Y, Dong S, Sun Z and Wang F. 2011. Absorption of different food sources by sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea): evidence from carbon stable isotope. Aquaculture 319, 272-276. http://dx.doi.org/j.aquaculture.2011.06.051.   DOI
14 Hamel JF and Mercier A. 2004. Fisheries Technical Paper. FAO Rome Italy 2004, 25-38.
15 Hankenson KD, Watkins BA, Schoenlein IA, Allen KG and Turek JJ. 2000. Omega-3 fatty acids enhanced ligament fibrablast collagen formation in association with changes in interleukin-6 production. Proc Soc Exp Biol Med 223, 88-95. http://dx.doi.org/10.1111/j.1525-1373.2000.22312.x.   DOI
16 Hasegawa N, Sawaguchi S, Tokuda M and Unuma T. 2014. Fatty acid composition in sea cucumber Apostichopus japonicus fed with microbially degraded dietary sources. Aquacult Res 45, 2021-2031. http://dx.doi.org/10.1111/are.12149.   DOI
17 Jeong BY, Choi BD, Moon SK, Lee JS and Jeong WG. 1998. Fatty acid composition of 35 species of marine invertebrates. J Fish Sci Tech 1, 232-241.
18 Kang SJ, Kang SW, Kang JH, Jung UC, Choi BD and Han JC. 2012. Sea cucumber aquaculture technology. Aqua info., Seoul, Korea, 32-36.
19 Kaneniwa M, Itabashi Y, Endo S and Takagi T. 1986. Fatty acids in Holothuroidea: occurrence of cis-14-tricosenoic acid. Comparative Biochem Physiolo B 84, 451-455. http://dx.doi.org/10.1016/0305-0491(86)90105-7.   DOI
20 Kang KH, Kwon JY and Kim YM. 2003. A beneficial coculture: charm abalone Haliotis discus hannai and sea cucumber Stichopus japonicus. Aquaculture 216, 87-93. http://dx.doi.org/10.1016/S0044-8486(02)00203-X.   DOI
21 Kasai T. 2003. Lipid contents and fatty acid composition of total lipid of sea cucumber Stichopus japonicus and Konowata(salted sea cucumber entrails). Food Sci Tec Res 9, 45-48. http://dx.doi.org/10.3136/fstr.9.45.   DOI
22 Kattan M, Mitchell H, Eggleston P, Gergen P, Crain E and Redline S. 1997. Characteristics of inner-city children with asthma: the National Cooperative Inner-City Asthma Study. Pediatr Pulmonol 24, 253-262.   DOI
23 Liu HM, Cai CG and Zhan JM. 1984. Using sea cucumber to treat 10 cases of anaemia. Guangxi Chinese Trad Med 7, 18.
24 Liu Y, Dong S, Tian X, Wang F and Gao Q. 2009. Effects of dietary sea mud and yellow soil on growth and energy budget of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture 286, 266-270. http://dx.doi.org/10.1016/j.aquaculture.2008.09.029.   DOI
25 Ma KS, Hao XG and Wang L. 1982. Study of anti-lung-cancer of acid mucopolysaccharide of A. stichopus. J Ocean Med 1, 72-77.
26 Oddy WH, De Klerk NH, Kendall GE, Mihrshahi S and Peat JK. 2004. Ratio of Omega-6 to Omega-3 Fatty Acids and Childhood Asthma. J Asthma 41, 319-326. http://dx.doi.org/10.1081/JAS-120026089.   DOI
27 Leo RF and Parker PL. 1966. Branched-chain Fatty acids in sediments. Science 152, 649-650. http://dx.doi.org/10.1126/science.152.3722.649.   DOI
28 Okamoto M, Mitsunobu F, Ashida K, Mifune T, Hosaki Y, Tsugeno H and Tanizaki Y. 2000. Effects of dietary supplementation with n-3 fatty acids compared with n-6 fatty acids on bronchial asthma. Internal Med 39, 107-111. http://dx.doi.org/10.2169/internalmedicine.39.107.   DOI
29 Okorie OE, Ko SH, Go S, Lee S, Bae JY, Han K and Bai SC. 2008. Preliminary study of the optimum dietary ascorbic acid level in sea cucumber, Apostichopus japonicus (Selenka). J World Aquacult Soc 396, 758-765. http://dx.doi.org/10.1111/j.1749-7345.2008.00211.x.   DOI
30 Pope CA. 2000. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? E Health Per 108, 713–723.   DOI
31 Ran-Ressler, RR, Khailova L, Arganbright KM, Adkins-Rieck CK, Jouni Z.E, Koren O and Dvorak B. 2011. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS One 6, 29-32. http://dx.doi.org/10.1371/journal.pone.0029032.   DOI
32 Ran-Ressler RR., Glahn RP, Bae S and Brenna JT. 2013. Branched-Chain Fatty Acids in the Neonatal Gut and Estimated Dietary Intake in Infancy and Adulthood. Nutrition Institute Workshop 77, 133-143. http://dx.doi.org/10.1159/000351396.   DOI
33 Seo J and Lee S. 2011. Optimum dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Aquacult Nutr 17, 56-61. http://dx.doi.org/10.1111/j.1365-2095.2009.00728.x.   DOI
34 Sun L, Xu YH and Xu HL. 1991. The enforcing effect of acid mucopolysaccharide on cellular immunity. Adv Biochem Biophys 18, 394.
35 Shi C, Dong S, Wang F, Gao Q and Tian X. 2015. Effects of the sizes of mud or sand particles in feed on growth and energy budgets of young sea cucumber (Apostichopus japonicus). Aquaculture 440, 6-11. http://dx.doi.org/10.1016/j.aquaculture.2015.01.028.   DOI
36 Shi C, Dong S, Wang F, Gao Q and Tian X. 2013. Effects of four fresh microalgae in diet on growth and energy budget of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture 416-417, 296-301. http://dx.doi.org/10.1016/j.aquaculture.2013.09.050.   DOI
37 Simopoulos AP. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56, 365-379. http://dx.doi.org/10.1016/S0753-3322(02)00253-6.   DOI
38 Van Dyck S, Gerbaux P and Flammang P. 2009. Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echinodermata) by mass spectrometry. Comparative Biochemistry and Physiology Part B: Biochem Mol Biol 152, 124-134. http://dx.doi.org/10.1016/j.cbpb.2008.10.011.   DOI
39 Wang J, Hu S, Jiang W, Song W, Cai L and Wang J. 2016. Fucoidan from sea cucumber may improve hepatic inflammatory response and insulin resistance in mice. Int Immunopharm 31, 15-23. http://dx.doi.org/10.1016/j.intimp.2015.12.009.   DOI
40 Wen B, Gao Q, Dong S, Hou Y, Yu H and Li W. 2016. Effects of dietary inclusion of benthic matter on feed utilization, digestive and immune enzyme activities of sea cucumber Apostichopus japonicus (Selenka). Aquaculture 458, 1-7. http://dx.doi.org/10.1016/j.aquaculture.2016.01.028.   DOI
41 WHO. 2009. Woolcock A J Asthma—disease of a modern life-style. Med J Aust 165, 358-359.
42 Wen B, Gao Q, Dong S, Hou Y, Yu H and Li W. 2016. Effects of different feed ingredients on growth, fatty acid profiles, lipid peroxidation and aminotransferases activities of sea cucumber Apostichopus japonicus (Selenka). Aquaculture 454, 176-183. http://dx.doi.org/10.1016/j.aquaculture.2015.12.027.   DOI
43 Wen B, Gao QF, Dong SL, Hou YR, Yu HB and Xi X. 2016. Absorption of different macroalgae by sea cucumber Apostichopus japonicus (Selenka): Evidence from analyses of fatty acid profiles. Aquaculture 451, 421-428. http://dx.doi.org/10.1016/j.aquaculture.2015.10.008.   DOI
44 Wen J, Hu C and Fan S. 2010. Chemical composition and nutritional quality of sea cucumbers. J Sci Food Agric 90, 2469-2474. http://dx.doi.org/10.1002/jsfa.4108.   DOI
45 Xia S, Yang H, Li Y, Liu S, Zhou Y and Zhang L. 2012. Effects of different seaweed diets on growth, digestibility, and ammonia-nitrogen production of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture 338, 304-308. http://dx.doi.org/10.1016/j.aquaculture.2012.01.010.   DOI
46 Yu HB, Gao QF, Dong SL, Wen B, Hou YR and Ning LG. 2015. Utilization of corn meal and extruded soybean meal by sea cucumber Apostichopus japonicus (Selenka): Insights from carbon stable isotope analysis. Aquaculture 435, 106-110. http://dx.doi.org/10.1016/j.aquaculture.2014.09.036.   DOI
47 Yuan X, Yang H, Zhou Y, Mao Y, Zhang T and Liu Y. 2006. The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka)(Echinodermata: Holothuroidea). Aquaculture 256, 457-467. http://dx.doi.org/10.1016/j.aquaculture.2006.01.029.   DOI
48 Zhong Y, Khan MA and Shahidi F. 2007. Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa). J Agr Food chem 55, 1188-1192. http://dx.doi.org/10.1021/jf063085h.   DOI
49 Yu Z, Zhou Y, Yang H, Ma Y and Hu C. 2014. Survival, growth, food availability and assimilation efficiency of the sea cucumber Apostichopus japonicus bottom-cultured under a fish farm in southern China. Aquaculture 426, 426-427. http://dx.doi.org/10.1016/j.aquaculture.2014.02.013.   DOI
50 Yu H, Gao Q, Dong S and Wen B. 2015. Changes in fatty acid profiles of sea cucumber Apostichopus japonicus (Selenka) induced by terrestrial plants in diets. Aquaculture 442, 119-124. http://dx.doi.org/10.1016/j.aquaculture.2015.03.002.   DOI