Browse > Article
http://dx.doi.org/10.5657/KFAS.2016.0168

Effect of Fish Farm Fecal Solid Diets on the Growth and Energy Budget of Juvenile Sea Cucumber Apostichopus japonicus  

Jin, Feng (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Jeong, U-Cheol (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Choi, Jong- Kuk (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Md, Anisuzzaman (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Kim, Kyoung-Duck (Aquafeed Research Center, National Institute of Fisheries Science)
Choi, Byeong-Dae (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Kang, Seok-Joong (Department of Seafood and Aquaculture Science, Gyeongsang National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.49, no.2, 2016 , pp. 168-175 More about this Journal
Abstract
We conducted a 90-day feeding experiment to evaluate the growth and energy budget of the sea cucumber Apostichopus japonicus. Sea cucumbers with a mean initial wet body weight of 3.03±0.06 g were fed one of the following three diets: an eel fecal solid diet, rainbow trout fecal solid diet, or a commercial diet at a water temperature of 17±1℃ and salinity of 32±1 psu. The results suggested that the diets affected the final body weight, specific growth rate (SGR), food ingestion, feces production ratio, and hence the growth and energy budget of the sea cucumbers. Sea cucumbers fed the eel and rainbow trout fecal solid diets showed poorer energy absorption, assimilation, and growth than those fed the commercial diet. The sea cucumbers fed the commercial diet had a significantly higher SGR and proportion of energy used for growth than those fed the other two diets. Sea cucumbers fed the rainbow trout fecal solid diet showed a comparatively higher ingestion rate and feces production ratio than those fed the commercial diet. The eel and rainbow trout fecal solid diets, therefore, were not suitable for sea cucumbers in intensive cultivation. Our findings will facilitate further development of more appropriate diets for culture of sea cucumber.
Keywords
Fecal solids; Sea cucumber; Energy budget; Apositichopus japonicus; Recirculating aquaculture system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bai Y, Zhang L, Xia S, Liu S, Ru X, Xu Q, Zhang T and Yang H. 2016. Effects of dietary protein levels on the growth, energy budget, and physiological and immunological performance of green, white and purple color morphs of sea cucumber, Apostichopus japonicus. Aquaculture 450, 375-382. http://dx.doi.org/10.1016/j.aquaculture.2015.08.021.   DOI
2 Ahlgren MO. 1998. Consumption and assimilation of salmon net pen fouling debris by the red sea cucumber Parastichopus californicus: implications for polyculture. J World Aquacult Soc 29, 133-139.   DOI
3 AOAC (Association of Official Analytical Chemists). 1995 Official Methods of Analysis, vol. 4(16th ed.)Association of Official Analytical Chemists, Arlington, VA, U.S.A., 1-45.
4 Bao J, Jiang H, Tian X and Dong S. 2014. Growth and energy budgets of green and red type sea cucumbers Apostichopus japonicus (Selenka) under different light colors. Aquaculture 418, 139-143. http://dx.doi.org/10.1016/j.aquaculture.2013.10.015.   DOI
5 Barrows F, Gaylord T, Stone D and Smith C. 2007. Effect of protein source and nutrient density on growth efficiency, histology and plasma amino acid concentration of rainbow trout (Oncorhynchus mykiss Walbaum). Aquacult Res 38, 1747-1758.
6 Bligh EG and Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911-917.   DOI
7 Dar MA and Ahmad HO. 2006. The feeding selectivity and ecological role of shallow water holothurians in the Red Sea. SPC Beche-de-mer Information Bull 24, 11-21.
8 Hamel J and Mercier A. 1998. Diet and feeding behaviour of the sea cucumber Cucumaria frondosa in the St. Lawrence estuary, eastern Canada. Can J Zool 76, 1194-1198.   DOI
9 Del MOV, Kelly MS and Burnell G. 2004. How diet influences energy partitioning in the regular echinoid Psammechinus miliaris; constructing an energy budget. J Exp Mar Biol Ecol 304, 159-181.   DOI
10 Duncan DB. 1955. Multiple range and multiple F tests. Biometrics 11, 1-42.   DOI
11 Furukawa A. 1966. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Nippon Suisan Gakkaishi 32, 502-506.   DOI
12 Hannah L, Pearce CM and Cross SF. 2013. Growth and survival of California sea cucumbers (Parastichopus californicus) cultivated with sablefish (Anoplopoma fimbria) at an integrated multi-trophic aquaculture site. Aquaculture 406-407, 34-42. http://dx.doi.org/10.1016/j.aquaculture.2013.04.022.   DOI
13 Hudson IR, Wigham BD and Tyler PA. 2004. The feeding behaviour of a deep-sea holothurian, Stichopus tremulus (Gunnerus) based on in situ observations and experiments using remotely operated vehicle. J Exp Mar Biol Ecol 301, 75-91. http://dx.doi.org/10.1016/j.jmarsys.2005.02.004.   DOI
14 McBride S, Lawrence J, Lawrence A and Mulligan T. 1998. The effect of protein concentration in prepared feeds on growth, feeding rate, total organic absorption, and gross assimilation efficiency of the sea urchin Strongylocentrotus franciscanus. J Shellfish Res 17, 1563-1570.
15 Kang JC, Jee JH, Song SY, Moon SW, Kang JW, Lee YD and Kim SJ. 2004. Effects of oral administration with fermented product from sewage in land-based seawater fish farm on haematological factors of olive flounder, Paralichthys olivaceus. J Fish Pathol 17, 57-66.
16 Kang KH, Kwon JY and Kim YM. 2003. A beneficial coculture: charm abalone Haliotis discus hannai and sea cucumber Stichopus japonicus. Aquaculture 216, 87-93. http://dx.doi.org/10.1016/S0044-8486(02)00203-X.   DOI
17 Kang SJ, Kang SW, Kang JH, Jung UC, Choi BD and Han JC. 2012. Sea cucumber aquaculture technology. Aqua info., Seoul, Korea, 32-36.
18 Kaushik SJ and Teles AO. 1985. Effect of digestible energy on nitrogen and energy balance in rainbow trout. Aquaculture 50, 89-101.   DOI
19 Liu Y, Dong S, Tian X, Wang F and Gao Q. 2010. The effect of different macroalgae on the growth of sea cucumbers (Apostichopus japonicus Selenka). Aquacult Res 41, e881-e885.   DOI
20 Liu Y, Dong S, Tian X, Wang F and Gao Q. 2009. Effects of dietary sea mud and yellow soil on growth and energy budget of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture 286, 266-270. http://dx.doi.org/10.1016/S0269-7491(02)00338-X.   DOI
21 Michio K, Kengo K, Yasunori K, Hitoshi M, Takayuki Y, Hideaki Y and Hiroshi S. 2003. Effects of deposit feeder Stichopus japonicus on algal bloom and organic matter contents of bottom sediments of the enclosed sea. Mar Pollut Bull 47, 118-125. .   DOI
22 Park SJ, Hong SG, Yoon IH and Lovatelli A. 2015. Chapter 23 - Apostichopus japonicus: “Dolgi Haesam” in the Republic of Korea (South Korea). Dev Aquacult Fish Sci 39, 423-431.   DOI
23 Moore H, Manship B and Roberts D. 1995. Gut structure and digestive strategies in three species of abyssal holothurians. Echinoderm Res 111-119.
24 Moriarty D. 1982. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Mar Freshwater Res 33, 255-263.   DOI
25 Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MC, Clay J, Folke C, Lubchenco J, Mooney H and Troell M. 2000. Effect of aquaculture on world fish supplies. Nature 405, 1017-1024.   DOI
26 Nelson EJ, MacDonald BA and Robinson SMC. 2012. The absorption efficiency of the suspension-feeding sea cucumber, Cucumaria frondosa , and its potential as an extractive integrated multi-trophic aquaculture (IMTA) species. Aquaculture 370, 19-25. http://dx.doi.org/10.1016/j.aquaculture.2012.09.029.   DOI
27 Orr LC, Curtis DL, Cross SF, Gurney-Smith H, Shanks A and Pearce CM. 2014. Ingestion rate, absorption efficiency, oxygen consumption, and fecal production in green sea urchins (Strongylocentrotus droebachiensis) fed waste from sablefish (Anoplopoma fimbria) culture. Aquaculture 422, 184-192. http://dx.doi.org/10.1016/j.aquaculture.2013.11.030.   DOI
28 Paltzat DL, Pearce CM, Barnes PA and McKinley RS. 2008. Growth and production of California sea cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended Pacific oysters (Crassostrea gigas Thunberg). Aquaculture 275, 124-137. http://dx.doi.org/10.1016/j.aquaculture.2007.12.014.   DOI
29 Pyeun JH and Ro JI. 1984. Studies on Lipids in Fresh Water Fishes; Study on Lipid Components of Carp, Cyprinus carpio. Korean J Fish Aquat Sci 17, 260-261.
30 Ramofafia C, Foyle TP and Bell JD. 1997. Growth of juvenile Actinopyga mauritiana (Holothuroidea) in captivity. Aquaculture 152, 119-128. http://dx.doi.org/10.1016/S0044-8486(96)01525-6.   DOI
31 Reid GK, Liutkus M, Bennett A, Robinson SMC, MacDonald B and Page F. 2010. Absorption efficiency of blue mussels (Mytilus edulis and M. trossulus) feeding on Atlantic salmon (Salmo salar) feed and fecal particulates: Implications for integrated multi-trophic aquaculture. Aquaculture 299, 165-169. http://dx.doi.org/10.1016/j.aquaculture.2009.12.002.   DOI
32 Shi C, Dong S, Wang F, Gao Q and Tian X. 2015. Effects of the sizes of mud or sand particles in feed on growth and energy budgets of young sea cucumber (Apostichopus japonicus). Aquaculture 440, 6-11. http://dx.doi.org/10.1016/j.aquaculture.2015.01.028.   DOI
33 Roberts D, Gebruk A, Levin V and Manship B. 2003. Feeding and digestive strategies in deposit-feeding holothurians. Oceanogr Mar Biol Annu Rev 38, 257-262.
34 Seo J and Lee S. 2011. Optimum dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Aquacult Nutr 17, 56-61.   DOI
35 Shi C, Dong S, Wang F, Gao Q and Tian X. 2013. Effects of four fresh microalgae in diet on growth and energy budget of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture 416-417, 296-301. http://dx.doi.org/10.1016/j.aquaculture.2013.09.050.   DOI
36 Slater MJ, Jeffs AG and Carton AG. 2009. The use of the waste from green-lipped mussels as a food source for juvenile sea cucumber, Australostichopus mollis. Aquaculture 292, 219-224.   DOI
37 Slater MJ, Lassudrie M and Jeffs AG. 2011. Method for determining apparent digestibility of carbohydrate and protein sources for artificial diets for juvenile sea cucumber, Australostichopus mollis. J World Aquacult Soc 42, 714-725.   DOI
38 Xia S, Yang H, Li Y, Liu S, Zhou Y and Zhang L. 2012. Effects of different seaweed diets on growth, digestibility, and ammonia-nitrogen production of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture 338, 304-308. http://dx.doi.org/10.1016/j.aquaculture.2012.01.010.   DOI
39 Wang F, Dong S, Huang G, Wu L, Tian X and Ma S. 2003. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture 228, 351-360.   DOI
40 Wang J, Jiang X, Zhao L, Su J and Sun P. 2007. Effects of dietary protein sources on growth in juvenile sea cucumber (Apostichopus japonicus). Feed Rev 10, 9-13.
41 Wang J, Zhao L, Liu J, Wang H and Xiao S. 2015. Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 43, 330-336. http://dx.doi.org/10.1016/j.fsi.2014.12.028.   DOI
42 Wen B, Gao Q, Dong S, Hou Y, Yu H and Li W. 2016. Effects of dietary inclusion of benthic matter on feed utilization, digestive and immune enzyme activities of sea cucumber Apostichopus japonicus (Selenka). Aquaculture 458, 1-7. http://dx.doi.org/10.1016/j.aquaculture.2016.01.028.   DOI
43 Wu B, Xia S, Rahman MM, Rajkumar M, Fu Z, Tan J and Yang A. 2015. Substituting seaweed with corn leaf in diet of sea cucumber (Apostichopus japonicus): Effects on growth, feed conversion ratio and feed digestibility. Aquaculture 444, 88-92. http://dx.doi.org/10.1016/j.aquaculture.2015.03.026.   DOI
44 Xia B, Gao Q, Wang J, Li P, Zhang L and Zhang Z. 2015. Effects of dietary carbohydrate level on growth, biochemical composition and glucose metabolism of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture 448, 63-70. http://dx.doi.org/10.1016/j.aquaculture.2015.05.038.   DOI
45 Yingst JY. 1976. The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding holothurian. J Exp Mar Biol Ecol 23, 55-69.   DOI
46 Xia S, Zhao P, Chen K, Li Y, Liu S, Zhang L and Yang H. 2012. Feeding preferences of the sea cucumber Apostichopus japonicus (Selenka) on various seaweed diets. Aquaculture 344-349, 205-209. http://dx.doi.org/10.1016/j.aquaculture.2012.03.022.   DOI
47 Xu ZF. 1999. Effect of Different Feed on Growth and Colorchange of Juvenile Sea Cucumbers. J Shandong Fish 16, 30-33.
48 Yuan X, Yang H, Zhou Y, Mao Y, Zhang T and Liu Y. 2006. The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture 256, 457-467. http://dx.doi.org/10.1016/j.aquaculture.2006.01.029.   DOI
49 Yokoyama H. 2013. Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages — Potential for integrated multi-trophic aquaculture. Aquaculture 372, 28-38. http://dx.doi.org/10.1016/j.aquaculture.2012.10.022.   DOI
50 Yu Z, Zhou Y, Yang H, Ma Y and Hu C. 2014. Survival, growth, food availability and assimilation efficiency of the sea cucumber Apostichopus japonicus bottom-cultured under a fish farm in southern China. Aquaculture 426, 238-248. http://dx.doi.org/10.1016/j.aquaculture.2014.02.013.   DOI
51 Zamora LN and Jeffs AG. 2011. Feeding, selection, digestion and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber, Australostichopus mollis. Aquaculture 317, 223-228. http://dx.doi.org/10.1016/j.aquaculture.2011.04.011.   DOI
52 Zhou Y, Yang H, Liu S, Yuan X, Mao Y, Liu Y, Xu X and Zhang F. 2006. Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea) co-cultured in lantern nets. Aquaculture 256, 510-520. http://dx.doi.org/10.1016/j.aquaculture.2006.02.005.   DOI
53 Zhang Q, Ma H, Mai K, Zhang W, Liu FZ and Xu W. 2010. Interaction of dietary Bacillus subtilis and fructooligosaccharide on the growth performance, non-specific immunity of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol 29, 204-211.   DOI
54 Zhao Y, Zhang W, Xu W, Mai K, Zhang Y and Liufu Z. 2012. Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 32, 750-755.   DOI
55 Zhu W, Mai K, Zhang B, Wang F and Xu G. 2005. Study on dietary protein and lipid requirement for sea cucumber, Stichopus japonicus. Mar Sci 29, 54-58.