Browse > Article
http://dx.doi.org/10.5657/kfas.2009.42.6.674

Growth Kinetics on the Nutrient of the Harmful Algae Chattonella marina and C. ovata (Raphidophyceae) Isolated from the South Sea of Korea  

Noh, Il-Hyeon (Faculty of Marine Technology, Chonnam National University)
Oh, Seok-Jin (Korea Inter-University Institute of Ocean Science, Pukyong University)
Park, Jong-Sick (Faculty of Marine Technology, Chonnam National University)
Shin, Hyeon-Ho (Faculty of Marine Technology, Chonnam National University)
Yoon, Yang-Ho (Faculty of Marine Technology, Chonnam National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.42, no.6, 2009 , pp. 674-682 More about this Journal
Abstract
Recently, the occurrence of harmful algae blooms from the Chattonella group has been increasing and expanding in the southern and western seas of Korea. We investigated the relationship between growth kinetics and nutrients in the harmful algae Chattonella marina and Chattonella ovata of the South Sea, Korea. As a result; high concentrations of ammonium ($30\;{\mu}M$ and above) was not effective to the growth of C. ovata, while C. marina displayed good growth at concentration of $100\;{\mu}M$. The half-saturation constant ($K_s$) of C. marina for ammonium ($2.51\;{\mu}M$), nitrate ($5.36\;{\mu}M$) and phosphate ($0.75\;{\mu}M$) was higher than C. ovata (1.85, 4.01, and $0.61\;{\mu}M$, respectively). This indicates that C. ovata can achieve higher cell densities than C. marina under lower nutrient conditions. These $K_s$ values were comparatively higher than those of diatoms and other flagellates previously reported. Therefore, our results indicate that the growth of C. marina and C. ovata is less adapted to lower nutrient environments than other competition species, such as Skeletonema costatum and Cochlodinium polykrikoides.
Keywords
Chattonella marina; Chattonella ovata; Nutrient; Growth kinetics; Half-saturation constant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Watanabe M, Nakamura Y, Mori S and Yamochi S. 1982. Effect of physico-chemical factors and nutrients on the growth of Heterosigma akashiwo Hada from Osaka Bay, Japan. Japan J Phycol 30, 279-288
2 Kang IS. 2009. Optical characteristic and growth kinetics for nitrate and phosphate by the planktonic diatom Skeletonema costatum and bentic diatom Nitzschia sp.. MSc. Thesis, University of Chonnam, Yeosu, Korea
3 Kim D-I. 2003. Physiological and ecological studies on harmful red tide dinoflagellate Cochlodinium polykrikoides (Margalef). Ph.D. Thesis, University of Kyushu, Fukuoka, Japan
4 Lu S and Hodgkiss IJ. 2001. More raphidophyte blooms in South China waters. Harmful Algae News 22, 1-2
5 Nakamura Y. 1985. Ammonium uptake kinetics and interactions between nitrate and ammonium uptake in Chattonella antiqua. J Oceanogr Soc Japan 41, 33-38   DOI
6 Oda T, Ishimatsu A, Shimada S, Takeshita S and Muramatsu T. 1992. Oxygen-radical-mediated toxic effects of the red tide flagellate Chattonella marina on Vibrio alginolyticus. Mar Biol 112, 505-509   DOI
7 Tang JY, Anderson DM and Au DW. 2005, Hydrogen peroxide is not the cause of fish kills associated with Chattonella marina: cytological and physiological evidence. Aquat Toxicol 72, 351-360   DOI   ScienceOn
8 Yamaguchi M. 1994. Physiological ecology of the red tide flagellate Gymnodinium nagasakiense (Dinophyceae) - Mechanism of the red tide occurrence and its prediction. Bull Nansei Nat'l Fish Res Inst 27, 251-394
9 Vrieling EG, Koeman RPT, Nagasaki K, Ishida Y, Peperzak L, Gieskes WWC and Veenhuis M. 1995. Chattonella and Fibrocapsa (Raphidophyceae): First observation of, potentially harmful, red tide organisms in Dutch coastal waters. Netherlands J Sea Res 33, 183-191   DOI   ScienceOn
10 Imai I, Yamaguchi M and Hori Y. 2006. Eutrophication and occurrences of harmful algae blooms in the Seto Inland Sea, Japan. Plankton Bonthos Res 1, 71-84   DOI   ScienceOn
11 Iwasaki H, Kim CH and Tsuchiya M. 1990. Growth characteristics of a dinoflagellate Gymnodinium nagasakiense Takatama et Adachi. Jpn J Phycol 38, 155-161
12 Provasoil L, Shiraishi K and Lance JR. 1959. Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture. Ann NY Sci 77, 250-261   DOI
13 Zhang Y, Fu FX, Whereat E, Coyne KJ and Hutchins DA. 2006. Bottom-up controls on a mixed-species HAB assemblage: A comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA. Harmful Algae 5, 310-320   DOI   ScienceOn
14 Mikhail SK. 2001. Toxic red tide species are on rise in Alexandria waters (Egypt). Harmful Algae News 22, 5
15 Kim HC, Lee CK, Lee SG, Kim HG and Park CK. 2001. Physico-chemical factors on the growth of Cochlodinium polykrikoides and nutrient utilization. J Korean Fish Soc 34, 445-456
16 NFRDI (National Fisheries Research & Development Institute). 2007. Harmful algal blooms in Korean coastal waters in 2006. 1-97
17 Matsuda A, Nishijima T and Fukami K. 1999. Effects of nitrogenous and phosphorus nutrients on the growth of toxic dinoflagellate Alexandrium catenella. Nippon Suisan Gakkaishi 65, 847-855   DOI   ScienceOn
18 Hosaka M. 1992. Growth characteristics of a strain of Heterosigma akashiwo (Hada) Hada isolated from Tokyo Bay, Japan. Bull Plankton Soc Japan 39, 49-58
19 NFRDI (National Fisheries Research & Development Institute). 2005. Harmful algal blooms in Korean coastal waters in 2005. 1-149
20 Kim DY. 2009. Short-term variation of phytoplankton assemblages and environmental conditions from coastal waters in Dolsan located in the central coast of South Sea, Korea. MSc. Thesis, University of Chonnam, Yeosu, Korea
21 Yamochi S. 1984. Nutrient factors involved in controlling the growth of red tide flagellates Prorocentrum micans, Eutreptiella sp. and Chattonella marina in Osaka Bay. Bull Plankton Soc Japan 31, 97- 106
22 Hiroishi S, Okada H, Imai I and Yoshida T. 2005. High toxicity of the novel bloom forming species Chattonella ovata (Raphidophyceae) to cultured fish. Harmful Algae 4, 783-787   DOI   ScienceOn
23 Nishikawa T and Hori Y. 2004a. Effect of nitrogen, phosphorus and silicon on the growth of the diatom Eucampia zodiacus caused bleaching of seaweed Porphyra isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi 70, 31-3   DOI   ScienceOn
24 Smayda TJ. 1997. Harmful algal blooms: Their ecoph -ysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42, 1137-1153   DOI
25 Liu W, Au DWT, Anderson DM, Lam PKS and Wu RSS. 2007. Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina. J Exp Mar Biol Ecol 346, 76-86   DOI   ScienceOn
26 Dugdale RC. 1967. Nutrient limitation in the sea: dynamic, identification, and significance. Limnol Oceanogr 12, 685-695   DOI   ScienceOn
27 Eppley RW and Coatsworth JL. 1968. Uptake of nitrate and nitrite by Ditylum brightwellii - Kinetics and mechanisms. J Phycol 4, 151-156   DOI
28 Eppley RW, Rogers JN and McCarthy JJ. 1969. Halfsaturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol Oceanogr 14, 912-920   DOI   ScienceOn
29 NFRDI (National Fisheries Research & Development Institute). 2008. Harmful algal blooms in Korean coastal waters in 2007. 1-127
30 Herndon J and Cochlan WP. 2007. Nitrogen utilization by the raphidophyte Heterosigma akashiwo: Growth and uptake kinetics in laboratory cultures. Harmful Algae 6, 260-270   DOI   ScienceOn
31 Nakamura Y and Watanabe MM. 1983. Growth characteristice of Chattonella antiqua Part 2. Effects of nutrients on growth. J Oceanogr Soc Japan 39, 151-155   DOI
32 Watanabe M, Kohata K and Kimura T. 1991. Diel vertical migration and nocturnal up-take of nutrients by Chattonella antiqua under stable stratification. Limnol Oceanogr 36, 593-602   DOI   ScienceOn
33 Wheeler PA and Kokkinakis SA. 1990. Ammonium recycling limits nitrate use in the oceanic subarctic Pacific. Limnol Oceanogr 35, 1267-1278   DOI   ScienceOn
34 Barraza-Guardado R, Cortes-Altamirano R and Sierra-Beltran A. 2004. Marine die-offs from Chattonella marina and Ch. cf. ovata in Kun Kaak Bay, Sonora in the Gulf of California. Harmful Algae News 25, 7-8
35 UNESCO. 2003. IOC Taxonomic Reference List of Toxic Plankton Algae. Retrieved from hattp://www.bi.ku.dk/ioc/grop4.asp on June
36 Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1, 493-509   DOI
37 Subrahmanyan R. 1954. On the life-history and ecology of Hornellia marina gen. et sp. nov., (Chloromonadineae), causing green discoloration of the sea and mortality among marine organisms off the Malabar Coast. Indian J Fish 1, 182-203
38 Yanagi T. 1989. Physical parameters of forecasting red tide in Harima-Nada, Japan. In: Red tides: Biology, environmental science, and toxicology. Anderson DM and Nemoto T, eds. Elsevier, New York, 149-152
39 Thomas WH. 1966. Surface nitrogenous nutrients and phytoplankton in the northeastern tropical Pacific Ocean. Limnol Oceanogr 11, 393-400   DOI   ScienceOn
40 Watanabe M, Kohata K, Kimura T, Takamatsu T, Yamaguchi S and Ioriya T. 1995. Generation of a Chattonella antiqua bloom by imposing a shallow nutricline in a mesocosm. Limnol Oceanogr 40, 1447-1460   DOI   ScienceOn
41 Donaghay PL and Osborn TR. 1997. Toward a theory of biological-physical control of harmful algal bloom danamics and impacts. Limnol Oceanogr 42, 1283-1296   DOI
42 Fauchot J, Levasseur M, Roy S, Gagnon R and Weise AM. 2005. Environmental factors controlling Alexandrium tamarense (Dinophyceae) growth rate during a red tide event in the St. Lawrence Estuary (Canada). J Phycol 41, 263-272   DOI   ScienceOn
43 Imai I, Yamaguchi M and Watanabe M. 1998. Ecophysiology, life cycle, and bloom dynamics of Chattonella in the Seto Inland Sea, Japan. In: Physiological Ecology of Harmful Algal Blooms. Anderson DM, Cembella AD and Hallegraeff GM, eds. Springer-Verlag, Berlin, 95-112
44 Park JS, Kim HG and Lee SK. 1988. Red Tide occurrence and succession of its causative organisms in Jinhae Bay. Bull Fish Res Dev Agency 41, 1- 26
45 Kim D-I, Noh IH and Yoon YH. 2005. Chattonella spp. (Raphidophyceae), a novel species responsible for the potentially harmful algal blooms in Korean coastal waters. In: Proceeding of the Korean Society for Marine Environmental Engineering Fall Annual Meeting, 127-131
46 Marshall JA, Nichols PD, Hamilton B, Lewis RJ and Hallegraeff GM. 2003. Ichthyotoxicity of Chattonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): the synergistic role of reactive oxygen species and free fatty acids. Harmful Algae 2, 273-281   DOI   ScienceOn
47 Hara Y, Doi K and Chihara M. 1994. Four new species of Chattonella (Raphidophyceae, Chromophyta) from Japan. Jpn J Phycol 42, 407-420
48 Qasim SZ, Bhattathiri PM and Devassy VP. 1973. Growth kinetics and nutrient requirements of two tropical marine phytoplanktons. Mar Biol 21, 299-304   DOI
49 Itoh K and Imai I. 1987. Rapido So (Raphidophyceae). In: A guide for studies of red tide organisms. The Japan Fisheries Resources Conservation Association, ed. Shuwa, Tokyo, 122-130
50 Nishikawa T and Hori Y 2004b. Effect of nitrogen, phosphorus and silicon on a growth of a diatom Coscinodiscus wailesii causing Porphyra bleaching isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi 70, 872-878   DOI   ScienceOn
51 Tilman D. 1982. Resource competition and community structure. Princeton University Press Princeton, 1-269
52 Yamaguchi H, Sakamoto S and Yamaguchi M. 2008. Nutrition and growth kinetics in nitrogen- and phosphorus-limited cultures of the novel red tide flagellate Chattonella ovata (Raphidophyceae). Harmful Algae 7, 26-32   DOI   ScienceOn