Browse > Article
http://dx.doi.org/10.5657/kfas.2002.35.4.386

Modification of an Ecosystem Model for Carrying Capacity of Shellfish System -I . Validation and Sensitivity Analysis-  

Lee Won Chan (National Fisheries Research & Development Institute)
Kim Hyung Chul (National Fisheries Research & Development Institute)
Choi Woo Jeung (National Fisheries Research & Development Institute)
Lee Pil Yong (National Fisheries Research & Development Institute)
Koo Jun Ho (National Fisheries Research & Development Institute)
Park Chung Kil (Department of Environmental Engineering, Pukyong National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.35, no.4, 2002 , pp. 386-394 More about this Journal
Abstract
Carrying capacity model focused on interactions between the filter-feeder growth and their environments is presented, and differences among existing various carrying capacity models are reviewed. For carrying capacity modeling of shellfish system, we constructed a new numerical model coupled oyster growth model with an ecosystem model (EUTRP2). Physical and biological processes such as water transport and mixing, primary production, feeding and growth of the cultivated oyster, Crassostrea gigas and benthic-pelagic exchange were included in the model, Simulated results for validation showed that the more phytoplankton biomass decreased, the more oyster meat weight and nutrients increased, suggesting a powerful tool for reasonable management of shellfish aquaculture. The model was sensitive to parameters controlling the primary production. Among the ecosystem compartments, the oyster growth is highly influenced by small changes in the physiological parameters of phytoplankton and oyster. This sensitivity analysis indicated the importance of experimental data on biological parameters for calibration of the model.
Keywords
Carrying capacity model; Ecosystem model; Oyster growth model; Shellfish system; Validation; Sensitivity analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kang, C.K., M.S. Park, P.Y. Lee, W.J. Choi and W.C. Lee. 2000. Seasonal variations in condition, reproductive activity and biochemical composition of the Pacific oyster, Crassostrea gigas (Thunberg), in suspended culture in two coastal bays of Korea. J. Shellfish Res., 19, 771-779
2 Kim, Y.S. 1980. Efficiency of energy transfer by a population of the farmed Pacific oyster, Crassostrea gigas in Geoje-Hansan Bay. Bull. Kor. Fish. Soc., 13, 179-193 (in Korean)
3 Kleijnen, J.P.C. 1995. Theory and methodology: Verification and validation of simulation models. European J. Operational Res., 82, 145-162   DOI   ScienceOn
4 Dame, R.F. 1993. The role of bivalve filter feeder material fluxes in estuarine ecosystem. In Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes, R.F. Dame, ed. NATO ASI Series, Springer-Verlag, New York, pp. 245-269
5 Di Toro, D.M., D.J. O'Connor and R.V. Thomann. 1971. A dynamic model of the phytoplankton population in the Sacramento-SanJoaquin Delta. Adv. Chem. Ser., 106, 131-180   DOI
6 Doering, P.H. and C.A. Oviatt. 1986. Application of filtration rate models to field populations of bivalves: An assessment using experimental mesocosms. Mar. Ecol. Prog. Ser., 31, 265-275   DOI
7 Dowd, M. 1997. On predicting the growth of cultured bivalves. Ecol. Mod., 104, 113-131   DOI   ScienceOn
8 Eppley, R.W., J.N. Rogers and J.J. MaCarthy. 1969. Half saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr., 14, 912-920   DOI   ScienceOn
9 Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull., 70, 1063-1082
10 Frost, B.W. 1972. Feeding behaviour of Calanus pacificus in mixtures of food particles. Limnol. Oceanogr., 17, 805-815   DOI   ScienceOn
11 Gerritsen, J., A.F. Holland and D.E. Irvine. 1994. Suspension-feeding bivalves and the fate of primary production: An estuarine model applied to Chesapeake Bay. Estuaries, 17, 403-416   DOI   ScienceOn
12 Grant, J., M. Dowd, K. Thompson, C. Emerson and A. Hatcher. 1993. Perspectives on field studies and related biological models of bivalve growth and carrying capacity. In Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Process, R.F. Dame, ed. NATO ASI Series, Springer-Verlag, New York, pp. 371-420
13 Bayne, B.L. 1998. The physiology of suspension feeding by bivalve molluscs: An introduction to the Plymouth 'TROPHEE' workshop. J. Exp. Mar. Biol. Ecol., 219, 1-19   DOI   ScienceOn
14 Bernard, F.R., 1974. Annual biodeposition and gross energy budget of mature Pacific oyster, Crassostrea gigas. J. Fish. Res. Board Canada, 31, 185-190   DOI
15 Boucher, G. and R. Boucher-Rodoni. 1988. In site measurement of respiratory metabolism and nitrogen fluxes at the interface of oyster beds. Mar. Ecol. Prog. Ser., 44, 229-238   DOI
16 Brown, T.N. and D. Kulasiri. 1996. Validating models of complex, stochastic, biological systems. Ecol. Model., 86, 129-134   DOI   ScienceOn
17 Chapelle, A., A. Menesguen, J.M. Deslous-Paoli, P. Souchu, N. Mazouni, A. Vaquer and B. Millet. 2000. Modelling nitrogen, primary production and oxygen in a Mediterranean lagoon. Impact of oysters farming and inputs from the watershed. Ecol. Model., 127, 161-181   DOI   ScienceOn
18 Clemmesen, B. and C.B. Jorgensen. 1987. Energetic coasts and efficiencies of ciliary filter feeding. Mar. Biol., 94, 445-449   DOI
19 Choi, W.J., C.K. Park and S.M. Lee. 1994. Numerical simulation of the formation of oxygen deficient water-masses in Jinhae Bay. J. Kor. Fish. Soc., 27, 413-433 (in Korean)
20 Choi, W.J., Y.Y. Chun, J.H. Park and Y.C. Park. 1997. The influence of environmental characteristics on the fatness of Pacific oyster, Crassostrea gigas, in Hansan-Koje Bay. J. Kor. Fish. Soc., 30, 794-803 (in Korean)
21 Dame, R.F. 1972. The ecological energies of growth, respiration and assimilation in the intertidal American oyster Crassotrea virginica. Mar. Biol., 17, 243-250   DOI
22 Smaal, A.C. 1991. The ecology and cultivation of mussels: New advances. Aquaculture, 94, 245-261   DOI   ScienceOn
23 Asmus, H., R. Asmus and K. Reise. 1990. Exchange processes in an intertidal mussel bed: A Sylt-flume study in the Wadden Sea. Ber. Biol. Anst. Helgoland, 6, 1-79
24 Bacher, C., H. Bioteau and A. Chapelle. 1995. Modelling the impact of a cultivated oyster population on the nitrogen dynamics: The Thau lagoon case (France). Ophella, 42, 29-54   DOI   ScienceOn
25 Bacher, C., P. Duarte, J.G. Feneira, M. He'ral and O. Raillard. 1998. Assessment and comparison of the Marennes-Ole'ron Bay (France) and Carlingford Lough (Ireland) cariying capacity with ecosystem models. 1998. Aquatic Ecology, 31, 379-394
26 Scholten, H. and A.C. Smaal. 1998. Response of Mytilus edulis L. to varying food concentration: Testing EMMY, an ecophysiological model. J. Exp. Mar. Biol. Ecol., 219, 217-239   DOI   ScienceOn
27 Shumway, S.E. 1982. Oxygen consumption in oysters: An overview. Mar. Biol. Lett., 3, 1-23
28 Smaal, A.C., T.C. Prince, N. Dankers and B. Ball. 1998. Minimum requirements for modelling bivalve carrying capacity. Aquat. Ecol., 31, 423-428   DOI   ScienceOn
29 Smayda, T.J. 1970. Suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Ann. Rev., 8, 354-411
30 Soniat, T.M., S.M. Ray and L.M. Jeffrey. 1984. Components of the seston and possible available food for oysters in Galveston Bay, Texis. Contriv. Mar. Sci., 27, 127-141
31 Soniat, T.M. and S.M. Ray. 1985. Relationships between possible available food and the competition, condition and reproductive state of oysters from Galveston Bay, Texas. Contriv. Mar. Sci., 28, 109-121
32 Steele, J.H. 1974. The Structure of Marine Ecosystems. Cambridge, Mass., Harvard University Press, pp. 1-128
33 Sugawara, Y. and K. Okoshi. 1991. An important problem for oyster farming in enclosed coastal waters. Mar. Pollut. Bull., 22, 271-274
34 Powell, E.N., E.E. Hofmann, J.M. Klink and S.M. Ray. 1992. Modelling oyster populations. I. A commentary on filteration rate. Is faster always better? J. Shellfish Res., 11, 387-398
35 Suschenya, L.M. 1970. Food rations, metabolism and growth of crustaceans. In Marine Food Chains, J.H. Steele, ed. University of California Press, Berkeley, CA
36 Walne, P.R. 1972. The influence of current speed, body size and water temperature on the filtration rate of Give species of bivalves. J. Mar. Biol. Assoc. U.K., 52, 345-374   DOI
37 Powell, E.N. and R.J. Stanton. 1985. Estimating biomass and energy flow of molluscs in palaeocommunities. Palaeontology, 28, 1-34
38 Prins, T.C., A.C. Smaal and R.F. Dame. 1998. A review of the feedbacks between bivalve grazing and ecosystem processes. Aquat. Ecol., 31, 349-359   DOI   ScienceOn
39 Raillard, O., J.M. Deslous-Paoli, M. Heral and D. Razet. 1993. Model-ling growth and feeding of the Japanese oyster Crassostrea gigas in Marennes-Oleron Bay (France). Oceanolog. Acta., 16, 73-82 (in French)
40 Raillard, O. and A. M$\nesguen. 1994. An ecosystem box model for estimating the carrying capacity of a macrotidal shellfish system. Mar. Ecol. Prog. Ser., 115, 117-130   DOI
41 Ross, A.H. and R.M. Nisbet. 1990. Dynamic models of growth and reproduction of the mussel, Mytilus edulis L. Functional Ecology, 4, 777-787   DOI   ScienceOn
42 Rykiel, E.J. 1996. Testing ecological models: The meaning of validation. Ecol. Model., 90, 229-244   DOI   ScienceOn
43 Klinck, J.M., E.N. Powell, E.E. Hofmann, E.A. Wilson and S.M. Ray. 1992. Modeling oyster populations: The effect of density and food supply on production. Pro. Adv. Mar. Tech. Conf., 5, 85-105
44 Ryther, J.H. 1956. Photosynthesis in the ocean as a function of light intensity. Limnol. Oceanogr., 1, 61-70   DOI   ScienceOn
45 Salas, H.J. and R.V. Thomann. 1978. A steady-state phytoplankton model of Cheaspeake Bay. J. WPCF, 50, 2752-2770
46 Schnoor, J.L. 1996. Environmental Modeling: Fate and Transport of Pollutants in Water, Air, and Soil. A Wiley-Interscience Publication, John Wiley & Sons Inc., pp. 9-11
47 Kobayashi, M., E.E. Hofmann, E.N. Powell, J.M. Klink and K. Kusaka. 1997. A population dynamics model for the Japanese oyster, Crassostrea gigas. Aquaculture, 149, 285-321   DOI   ScienceOn
48 Kusuki, Y. 1977. Fundamental studies on the deterioration of oyster growing grounds II. Organic content of faecal materials. Bull. Jpn. Soc. Sci. Fish., 43, 167-171 (in Japanese)   DOI
49 Marshall, S.M. and A.P. Orr. 1955a. Experimental feeding of the copepod Calanus finmarchicus on phytoplankton cultures labeled with radioactive carbon. Pap. Mar. Biol. Oceanogr., Deep-Sea Res., 3, 110-114
50 Marshall, S.M. and A.P. Orr. 1955b. On the biology of Calanus finmarchicus. VIII. Food uptake, assimilation and excretion in adult and stage V. Calanus. J. Mar. Biol. Asso. UK., 34, 495-529   DOI
51 Nakata, K., K. Ishikawa and Y. Matukawa. 1985. Numerical models of coastal current and transport in the bay. Bull. Coastal Oceanogr., 22, 96-108 (in Japanese)
52 Law, A.M. and W.D. Kelton. 1991. Simulation Modeling and Analysis. 2nd ed., McGraw-Hill, New York, 299pp
53 H$\ral, M., B.J. Rothschild and P. Goulletquer. 1990. Decline of oyster production in the Maryland portion of the Chesapeake Bay: Causes and perspectives. ICES Shellfish Committee K:20, 37p
54 Lee, W.C. 2001. Modification and Application of an Ecosystem Model for Carrying Capacity in Oyster Culturing Ground. Ph. D. Thesis. Pukyong Univ., 132pp (in Korean)
55 Newell, R.I.E. and S.J. Jordan. 1983. Preferential ingestion of organic material by the American oyster Crassotrea virginica. Mar. Ecol. Prog. Ser., 13, 47-53   DOI
56 Ogura, N. 1975. Decomposition of dissolved organic matter in coastal seawater. Mar. Biol., 31, 101-111   DOI
57 H$\ral, M. 1993. Why carring capacity models are useful tools for management of bivalve molluscs culture. In Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes, R.F. Dame, ed. NATO ASI Series, Springer-Verlag, New York, pp. 455-478
58 Hibbert, C.J. 1977. Growth and survivorship in a tidal-flat population of the bivalve Mercenaria meivenana from Southampton Water. Mar. Biol., 44, 71-76   DOI
59 Hoch, T. and A. Menesguen. 1997. Modelling the biogeochemical cycles of elements limiting primary production in the English Channel II. Sensitivity analyses. Mar. Ecol. Prog. Ser., 146, 189-205   DOI
60 Ishikawa, M. and H. Nishimura. 1983. A new method of evaluating the mineralization of paticulate and dissolved photoassimilated organic matter. J. Oceanogr. Soc. Japan., 39, 29-42   DOI
61 J$\phi$rgensen, S.E. (ed.). 1979. Handbook of Environmental Data and Ecological Parameters. International society for ecological model-ling. Pergamon Press, New York, 1162pp