Browse > Article
http://dx.doi.org/10.5734/JGM.2022.19.1.1

Genetic variations affecting response of radiotherapy  

Choi, Eun Kyung (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine)
Publication Information
Journal of Genetic Medicine / v.19, no.1, 2022 , pp. 1-6 More about this Journal
Abstract
Radiation therapy (RT) is a very important treatment for cancer that irradiates a large amount of radiation to lead cancer cells and tissues to death. The progression of RT in the aspect of personalized medicine has greatly advanced over the past few decades in the field of technical precision responding anatomical characteristics of each patient. However, the consideration of biological heterogeneity that makes different effect in individual patients has not actually applied to clinical practice. There have been numerous discovery and validation of biomarkers that can be applied to improve the efficiency of radiotherapy, among which those related to genomic information are very promising developments. These genome-based biomarkers can be applied to identify patients who can benefit most from altering their therapeutic dose and to select the best chemotherapy improving sensitivity to radiotherapy. The genomics-based biomarkers in radiation oncology focus on mutational changes, particularly oncogenes and DNA damage response pathways. Although few have translated into clinically viable tools, there are many promising candidates in this field. In this review the prominent mutation-based biomarkers and their potential for clinical translation will be discussed.
Keywords
Radiation therapy; Genomics; Biomarkers; Mutation; Clinical trial;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hong TS, Wo JY, Borger DR, Yeap BY, McDonnell EI, Willers H, et al. Phase II study of proton-based stereotactic body radiation therapy for liver metastases: importance of tumor genotype. J Natl Cancer Inst 2017;109:djx031.
2 Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI, et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N Engl J Med 2020;383:1207-17.   DOI
3 Wang Y, Li N, Jiang W, Deng W, Ye R, Xu C, et al. Mutant LKB1 confers enhanced radiosensitization in combination with trametinib in KRAS-mutant non-small cell lung cancer. Clin Cancer Res 2018;24:5744-56.   DOI
4 Hong TS, Wo JYL, Ryan DP, Zheng H, Borger DR, Kwak EL, et al. Phase Ib study of neoadjuvant chemoradiation (CRT) with midostaurin, 5-fluorouracil (5-FU) and radiation (XRT) for locally advanced rectal cancer: sensitization of RAS mutant tumors. J Clin Oncol 2018;15 Suppl:e15674.
5 Zaman A, Wu W, Bivona TG. Targeting oncogenic BRAF: past, present, and future. Cancers (Basel) 2019;11:1197.   DOI
6 Maraka S, Janku F. BRAF alterations in primary brain tumors. Discov Med 2018;26:51-60.
7 O'Leary CG, Andelkovic V, Ladwa R, Pavlakis N, Zhou C, Hirsch F, et al. Targeting BRAF mutations in non-small cell lung cancer. Transl Lung Cancer Res 2019;8:1119-24.   DOI
8 Gopal P, Abazeed M. High-throughput phenotyping of BRAF mutations reveals categories of mutations that confer resistance to radiation. IJROBP 2017;99:E591.
9 Zahnreich S, Mayer A, Loquai C, Grabbe S, Schmidberger H. Radiotherapy with BRAF inhibitor therapy for melanoma: progress and possibilities. Future Oncol 2016;12:95-106.   DOI
10 Hecht M, Zimmer L, Loquai C, Weishaupt C, Gutzmer R, Schuster B, et al. Radiosensitization by BRAF inhibitor therapy-mechanism and frequency of toxicity in melanoma patients. Ann Oncol 2015;26:1238-44.   DOI
11 Weber AM, Ryan AJ. ATM and ATR as therapeutic targets in cancer. Pharmacol Ther 2015;149:124-38.   DOI
12 Pitter KL, Casey DL, Lu YC, Hannum M, Zhang Z, Song X, et al. Pathogenic ATM mutations in cancer and a genetic basis for radiotherapeutic efficacy. J Natl Cancer Inst 2021;113:266-73.   DOI
13 Franzone P, Fiorentino A, Barra S, Cante D, Masini L, Cazzulo E, et al. Image-guided radiation therapy (IGRT): practical recommendations of Italian Association of Radiation Oncology (AIRO). Radiol Med 2016;121:958-65.   DOI
14 Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of radiosensitizers in cancer radiotherapy. Int J Nanomedicine 2021;16:1083-102. Erratum in: Int J Nanomedicine 2021;16:8139-40.   DOI
15 Vendetti FP, Lau A, Schamus S, Conrads TP, O'Connor MJ, Bakkenist CJ. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget 2015;6:44289-305.   DOI
16 Dunlop CR, Wallez Y, Johnson TI, Bernaldo de Quiros Fernandez S, Durant ST, Cadogan EB, et al. Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models. Br J Cancer 2020;123:1424-36.   DOI
17 Chow OS, Kuk D, Keskin M, Smith JJ, Camacho N, Pelossof R, et al. KRAS and combined KRAS/TP53 mutations in locally advanced rectal cancer are independently associated with decreased response to neoadjuvant therapy. Ann Surg Oncol 2016;23:2548-55.   DOI
18 Kirsch DG, Diehn M, Kesarwala AH, Maity A, Morgan MA, Schwarz JK, et al. The future of radiobiology. J Natl Cancer Inst 2018;110:329-40.   DOI
19 Stokes WA, Sumner WA, Breggren KL, Rathbun JT, Raben D, McDermott JD, et al. A comparison of concurrent cisplatin versus cetuximab with radiotherapy in locally-advanced head and neck cancer: a biinstitutional analysis. Rep Pract Oncol Radiother 2017;22:389-95.   DOI
20 Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant cK-ras genes. Cell 1988;53:549-54.   DOI
21 Lin SH, Zhang J, Giri U, Stephan C, Sobieski M, Zhong L, et al. A high content clonogenic survival drug screen identifies MEK inhibitors as potent radiation sensitizers for KRAS mutant non-small-cell lung cancer. J Thorac Oncol 2014;9:965-73.   DOI
22 Mehanna H, Robinson M, Hartley A, Kong A, Foran B, Fulton-Lieuw T, et al.; De-ESCALaTE HPV Trial Group. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet 2019;393:51-60.   DOI
23 Chowdhary M, Patel KR, Danish HH, Lawson DH, Khan MK. BRAF inhibitors and radiotherapy for melanoma brain metastases: potential advantages and disadvantages of combination therapy. Onco Targets Ther 2016;9:7149-59.   DOI
24 Jin Z, Sinicrope FA. Advances in the therapy of BRAFV600E metastatic colorectal cancer. Expert Rev Anticancer Ther 2019;19:823-9.   DOI
25 Cojocaru E, Parkinson CA, Brenton JD. Personalising treatment for high-grade serous ovarian carcinoma. Clin Oncol (R Coll Radiol) 2018;30:515-24.   DOI
26 Mak RH, Hermann G, Lewis JH, Aerts HJ, Baldini EH, Chen AB, et al. Outcomes by tumor histology and KRAS mutation status after lung stereotactic body radiation therapy for early-stage non-small-cell lung cancer. Clin Lung Cancer 2015;16:24-32.   DOI
27 Lee JM, Ledermann JA, Kohn EC. PARP inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann Oncol 2014;25:32-40.   DOI
28 Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M, et al. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap World Sci) 2018;6:79-100.   DOI
29 Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M, et al. The role of BRAF V600 mutation in melanoma. J Transl Med 2012;10:85.   DOI
30 Sambade MJ, Peters EC, Thomas NE, Kaufmann WK, Kimple RJ, Shields JM. Melanoma cells show a heterogeneous range of sensitivity to ionizing radiation and are radiosensitized by inhibition of BRAF with PLX-4032. Radiother Oncol 2011;98:394-9.   DOI
31 Martin OA, Martin RF. Cancer radiotherapy: understanding the price of tumor eradication. Front Cell Dev Biol 2020;8:261.   DOI
32 Sheng Y, Zhang J, Ge Y, Li X, Wang W, Stephens H, et al. Artificial intelligence applications in intensity modulated radiation treatment planning: an overview. Quant Imaging Med Surg 2021;11:4859-80.   DOI
33 Glide-Hurst CK, Chetty IJ. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies. J Thorac Dis 2014;6:303-18.
34 Scarborough JA, Scott JG. Translation of precision medicine research into biomarker-informed care in radiation oncology. Semin Radiat Oncol 2022;32:42-53.   DOI
35 Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020;5:60.   DOI
36 Sundar R, Brown J, Ingles Russo A, Yap TA. Targeting ATR in cancer medicine. Curr Probl Cancer 2017;41:302-15.   DOI
37 Dziadkowiec KN, Gasiorowska E, Nowak-Markwitz E, Jankowska A. PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. Prz Menopauzalny 2016;15:215-9.
38 Lloyd RL, Wijnhoven PWG, Ramos-Montoya A, Wilson Z, Illuzzi G, Falenta K, et al. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene 2020;39:4869-83.   DOI
39 Kamran SC, Lennerz JK, Margolis CA, Liu D, Reardon B, Wankowicz SA, et al. Integrative molecular characterization of resistance to neoadjuvant chemoradiation in rectal cancer. Clin Cancer Res 2019;25:5561-71.   DOI
40 Min A, Im SA, Jang H, Kim S, Lee M, Kim DK, et al. AZD6738, a novel oral inhibitor of ATR, induces synthetic lethality with ATM deficiency in gastric cancer cells. Mol Cancer Ther 2017;16:566-77.   DOI
41 Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004;59(2 Suppl):21-6.   DOI
42 Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer 2016;16:234-49.   DOI
43 Zheng DJ, Yu GH, Gao JF, Gu JD. Concomitant EGFR inhibitors combined with radiation for treatment of non-small cell lung carcinoma. Asian Pac J Cancer Prev 2013;14:4485-94.   DOI
44 Rivera F, Garcia-Castano A, Vega N, Vega-Villegas ME, Gutierrez-Sanz L. Cetuximab in metastatic or recurrent head and neck cancer: the EXTREME trial. Expert Rev Anticancer Ther 2009;9:1421-8.   DOI
45 Burmer GC, Loeb LA. Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma. Proc Natl Acad Sci U S A 1989;86:2403-7.   DOI
46 Cassidy RJ, Zhang X, Patel PR, Shelton JW, Escott CE, Sica GL, et al. Next-generation sequencing and clinical outcomes of patients with lung adenocarcinoma treated with stereotactic body radiotherapy. Cancer 2017;123:3681-90.   DOI
47 Tam IY, Chung LP, Suen WS, Wang E, Wong MC, Ho KK, et al. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res 2006;12:1647-53.   DOI
48 Liu P, Wang Y, Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B 2019;9:871-9.   DOI
49 Anker CJ, Grossmann KF, Atkins MB, Suneja G, Tarhini AA, Kirkwood JM. Avoiding severe toxicity from combined BRAF inhibitor and radiation treatment: consensus guidelines from the Eastern Cooperative Oncology Group (ECOG). Int J Radiat Oncol Biol Phys 2016;95:632-46. Erratum in: Int J Radiat Oncol Biol Phys 2016;96:486.   DOI
50 Patel KR, Chowdhary M, Switchenko JM, Kudchadkar R, Lawson DH, Cassidy RJ, et al. BRAF inhibitor and stereotactic radiosurgery is associated with an increased risk of radiation necrosis. Melanoma Res 2016;26:387-94.   DOI
51 Hecht M, Meier F, Zimmer L, Polat B, Loquai C, Weishaupt C, et al. Clinical outcome of concomitant vs interrupted BRAF inhibitor therapy during radiotherapy in melanoma patients. Br J Cancer 2018;118:785-92.   DOI