Browse > Article
http://dx.doi.org/10.5734/JGM.2018.15.2.55

Integrated diagnostic approach of pediatric neuromuscular disorders  

Lee, Ha Neul (Department of Pediatrics, Yonsei University College of Medicine)
Lee, Young-Mock (Department of Pediatrics, Yonsei University College of Medicine)
Publication Information
Journal of Genetic Medicine / v.15, no.2, 2018 , pp. 55-63 More about this Journal
Abstract
Clinical and genetic heterogeneity in association with overlapping spectrum is characteristic in pediatric neuromuscular disorders, which makes confirmative diagnosis difficult and time consuming. Considering evolution of molecular genetic diagnosis and resultant upcoming genetically modifiable therapeutic options, rapid and cost-effective genetic testing should be applied in conjunction with existing diagnostic methods of clinical examinations, laboratory tests, electrophysiologic studies and pathologic studies. Earlier correct diagnosis would enable better clinical management for these patients in addition to new genetic drug options and genetic counseling.
Keywords
Pediatrics; Neuromuscular diseases; Phenotype; Molecular diagnostic techniques;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Preston DC, Shapiro BE. Electromyography and neuromuscular disorders: clinical-electrophysiologic correlations. 3rd ed. Oxford: Sauders; 2012.
2 Karakis I, Liew W, Darras BT, Jones HR, Kang PB. Referral and diagnostic trends in pediatric electromyography in the molecular era. Muscle Nerve 2014;50:244-9.   DOI
3 Rabie M, Jossiphov J, Nevo Y. Electromyography (EMG) accuracy compared to muscle biopsy in childhood. J Child Neurol 2007;22:803-8.   DOI
4 Dubowitz V, Sewry CA, Oldfors A, Lane RJM. Muscle biopsy: a practical approach. 4th ed. Philadelphia: Saunders Elsevier; 2013.
5 Chae JH, Vasta V, Cho A, Lim BC, Zhang Q, Eun SH, et al. Utility of next generation sequencing in genetic diagnosis of early onset neuromuscular disorders. J Med Genet 2015;32:208-16.
6 Lim BC, Ki CS, Kim JW, Cho A, Kim MJ, Hwang H, et al. Fukutin mutations in congenital muscular dystrophies with defective glycosylation of dystroglycan in Korea. Neuromuscul Disord 2010;20:524-30.   DOI
7 Zvaritch E, Kraeva N, Bobardier E, McCloy RA, Depreux F, Holmyard D, et al. Ca2+ dysregulation in Ryr1 (I4895T/wt) mice causes congenital myopathy with progressive formation of minicores, cores, and nemaline rods. Proc Natl Acad Sci U S A 2009;106:21813-8.   DOI
8 Al-Ghamdi F, Darras BT, Ghosh PS. Spectrum of neuromuscular disorders with hyperCKemia from a tertiary care pediatric neuromuscular center. J Child Neurol 2018;33:389-96.   DOI
9 Kley RA, Shimidt-Wilcke T, Vorgerd M. Differential diagnosis of hyper-CKemia. Neurol Intern Open 2018;2:E72-83.   DOI
10 North KN. Clinical approach to the diagnosis of congenital myopathies. Semin Pediatr Neurol 2011;18:216-20.   DOI
11 Bohm J, Vasli N, Malfatti E, Le Gras S, Feger C, Jost B, et al. An integrated diagnosis strategy for congenital myopathies. PLoS One 2013; 8:e67527.   DOI
12 Bonnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscl Disord 2014;24:289-311.   DOI
13 Eun BL, Kim SW, Kim YK, Kim JW, Moon JS, Park SK, et al. Introduction of national health screening program for infant and children. J Korean Child Neurol Soc 2007;15:142-7.
14 Sul YA, Yum MS, Lee YJ, Kim EH, Ko TS, Yoo HW. Floppy infant syndrome: clinical analysis and diagnositc approaches (2008-2012). J Korean Child Neurol Soc 2014;22:143-8.   DOI
15 Richer LP, Shevell MI, Miller SP. Diagnostic profile of neonatal hypotonia: an 11-year study. Pediatr Neurol 2001;25:32-7.   DOI
16 Paro-Panjan D, Neubauer D. Congenital hypotonia: is there an algorithm? J Child Neurol 2004;19:439-42.   DOI
17 Talbot K, Tizzano EF. The clinical landscape for SMA in a new therapeutic era. Gene Ther 2017;24:529-33.   DOI
18 Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, et al. Results from a phase 1 study of nusinersen (ISISSMN( Rx)) in children with spinal muscular atrophy. Neurology 2016; 86:890-7.   DOI
19 Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016;388: 3017-26.   DOI
20 Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. Nusinersen versus sham control in later-onset spinal muscular atropphy. N Engl J Med 2018;378:625-35.   DOI
21 McDonald CM, Henricon EK, Abresch RT, Duong T, Joyce NC, Hu F, et al. Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study. Lancet 2018;391:451-61.   DOI
22 McDonald CM, Gordish-Dressman H, Henricson EK, Duong T, Joyce NC, Jhawar S, et al. Longitudinal pulmonary function testing outcome measures in Duchenne muscular dystrophy: long-term natural history with and without glucocorticoids. Neuromuscul Disord 2018; 28:897-909.   DOI
23 Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 2016;79:257-71.   DOI
24 Charleston JS, Schenell FJ, Dworzak J, Donoqhue C, Lewis S, Chen L, et al. Eteplirsen treatment for Duchenne muscular dystrophy: exon skipping and dystrophin production. Neurology 2018;90:e2146-54.   DOI
25 Voit T, Topaloglu H, Straub V, Muntoni F, Deconinck N, Champion G, et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomized, placebo-controlled phase 2 study. Lancet Neurol 2014;13:987-96.   DOI
26 Goemans NM, Tulinius M, van den Hauwe M, Kroksmark AK, Buyse G, Wilson RJ, et al. Long-term efficacy, safety, and pharmacokinetics of drisapersen in Duchenne muscular dystrophy: results from an openlabel extension study. PLoS One 2016;11:e0161955.   DOI
27 McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM, Goemans N, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomized, doubleblind, placebo-controlled, phase 3 trial. Lancet 2017;390:1489-98.   DOI
28 Ho G, Carey KA, Cardamone M, Farrar MA. Myotonic dystrophy type 1: clinical manifestations in children and adolescents. Arch Dis Child 2018, in press.
29 Darras BT, Jones HR Jr, Ryan MM, De Vivo DC. Neuromuscular disorders of infancy, childhood, and adeloscence: a clinician's approach. 2nd ed. San Diego: Academic Press; 2014.
30 Goebel HH, Sewry CA, Weller RO. Muscle disease: pathology and genetics. 2nd ed. Chichester: Wiley-Blackwell; 2013.
31 Pina-Garza JE, Fenichel GM. Fenichel's clinical pediatric neurology: a signs and symptoms approach. 7th ed. London: Elsevier Saunders;2013.
32 Dubowitz V. Muscle disorders in childhood. 2nd ed. London: Bailliere Tindall; 1995.
33 North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowing JJ, et al. Approach to the diagnosis of congenital myopathies. Neuromuscl Dis 2014;24:97-116.   DOI
34 Dowling JJ, Gonorazky HD, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: the future is now. Am J Med Genet A 2018; 176:804-41.   DOI
35 Darras BT, Jones HR. Diagnosis of pediatric neuromuscular disorders in the era of DNA analysis. Pediatr Neurol 2000;23:289-300.   DOI
36 Sumner CJ, Paushkin S, Ko CP. Spinal muscular atrophy: disease mechanisms and therapy. San Diego: Academic Press; 2016.
37 Ravenscroft G, Davis MR, Lamont P, Forrest A, Laing NG. New era in genetics of early-onset muscle disease: breakthroughs and challenges. Semin Cell Dev Biol 2017;64:160-70.   DOI
38 Emery AE, Muntoni F, Quinlivan R. Duchenne muscular dystrophy. 4th ed. Oxford: Oxford University Press; 2015.