1 |
A. ABDULAZIZ, On the Egyptian method of decomposing 2/n into unit fractions, Historia Mathematica 35 (2008), 1-18.
DOI
|
2 |
Col. R. C. BEARD, Editors. The Fibonacci drawing board design of the great pyramid of Gizeh, The Fibonacci Quarterly 6 (1968), 66-68.
|
3 |
M. BERNAL, Black Athena, II, The archaeological and documentary evidence, Rutgers Univ. Press, New Jersey, 2001.
|
4 |
M. BERNAL, Animadversions on the origins of western science, Isis 83(4) (1992), 596-607.
DOI
|
5 |
M. BERNAL, Response to Robert Palter, Hist. Sci. 32 (1994), 445-468.
DOI
|
6 |
H. BUTLER, Egyptian pyramid geometry, Benben Pubs, Mississauga, 1998.
|
7 |
F. CAJORY, A history of mathematics, 5th ed, AMS, Rhode Island, 1991.
|
8 |
A. CHACE, The Rhind mathematical papyrus, NCTM, Virginia, 1979.
|
9 |
M. CLAGETT, Ancient Egyptian science: A source book, Vol. 3, American Philosophical Society, Philadelphia, 1999.
|
10 |
H. ENGELS, Quadrature of the circle in ancient Egypt, Historia Mathematica 4 (1977), 137-140.
DOI
|
11 |
EUCLID, The thirteen books of the elements (Translated: T. L. Heath), Dover, New York, 1956.
|
12 |
R. GILLINGS, Mathematics in the time of the pharaohs, Dover, New York, 1972.
|
13 |
D. BURTON, The history of mathematics, 6th ed., McGraw-Hill, New Nork, 2007.
|
14 |
J. HAMBIDGE, The elements of dynamic symmetry, Yale Univ. Press, New Haven, 1920.
|
15 |
T. HEATH, A history of Greek mathematics, Vol. I: From Thales to Euclid, Dover, New York, 1981.
|
16 |
T. HEATH, A history of Greek mathematics, Vol. II: From Aristarchus to Diophantus, Dover, New York, 1981.
|
17 |
M. KLINE, Mathematical thought from ancient to modern times, Vol. 1, Oxford Univ. Press, Oxford, 1972.
|
18 |
B. LUMPKIN, The Egyptian and Pythagorean triples, Historia Mathematica 7 (1980), 186-187.
DOI
|
19 |
J. PARK, The golden ratio and mathematics education issues, J. of the Korean Society of Mathematical Education Series E 28(2) (2014), 281-302.(박제남, 황금비와 수학교육 담론, 한국수학교육학회지 시리즈 E, 28(2) (2014), 281-302.)
|
20 |
L. MIATELLO, The difference 5 1/2 in a problem of rational form the Rhind mathematical papyrus, Historia Mathematica 35 (2008), 277-284.
DOI
|
21 |
J. PARK, M. PARK, K. HONG, Newton's frustum and glass pyramid of I. M. Pei, Asia-pacific J. of Multimedia Services Convergent with Art, Humanities, and Sociology 7(5) (2017), 229-244.(박제남, 박민구, 홍경희, Newton의 원뿔대와 I. M. Pei의 유리 피라미드, Asia-pacific J. of Multimedia Services Convergent with Art, Humanities, and Sociology 7(5) (2017), 229-244.)
DOI
|
22 |
G. ROBINS, Irrational numbers and pyramids, Discussions in Egyptology 18 (1990), 43-53.
|
23 |
G. ROBINS, C. SHUTE, The Rhind mathematical papyrus, Dover, New York, 1978.
|
24 |
C. ROSSI, Architecture and mathematics in ancien , Cambridge Univ. Press, New York, 2003.
|
25 |
J. SHON, K. SONG, A history of Egypt, Garam, 2011.(손주영, 송경근, 이집트 역사, 가람기획, 2011.)
|
26 |
D. SMITH, History of mathematics, Vol. 1, Dover, New York, 1958.
|
27 |
M. VAN DE MIEROOP, A history of ancient Egypt, Wiley, West Sussex, 2011.
|