1 |
김남희 외, 수학교육과정과 교재연구, 경문사, 2011.
|
2 |
고종숙, 수학 바로 보기, 여울, 2004.
|
3 |
민세영, 역사발생적 수학 학습-지도 원리에 관한 연구, 서울대학교 박사학위 논문, 2002.
|
4 |
정연준, 미적분의 기본정리에 대한 교수학적 분석, 서울대학교 박사학위 논문, 2010.
|
5 |
정연준, 이경화, 부정적분과 정적분의 관계에 관한 고찰, 학교수학 11(2009), No. 2, pp. 301-316.
|
6 |
한경혜, 수학사 도입의 이론적 근거 - 역사 발생 원리와 해석적 방법론, Proceeding of HPM2012 Book 1 (2012), pp. 59-72.
|
7 |
Baron, M. E., The Origins of the Infinitesimal Calculus, Dover Publications, Inc., New York, 1969.
|
8 |
Bell, J. L., The Continuous and the Infinitesimal in Mathematics and Philosophy, Polimetrica, International Scientific Publisher, Monza-Milano (Italy), 2006.
|
9 |
Boyer, C. B., The History of the Calculus and Its Conceptual Development, Dover Publications, Inc., New York, 1949.
|
10 |
Boyer, C. B., 김경화 역, 미적분학사: 그 개념의 발달, 교우사, 2004. (원저는 1949년 출판).
|
11 |
Brousseau, G., Theory of Didactical Situations in Mathematics Education, Kluwer Academic Publishers, 1997.
|
12 |
Child, J. M.,"The Lectiones Geometricae of Isaac Barrow", Monist 26(1916), No. 2, pp. 251-267.
DOI
|
13 |
Child, J. M., The Geometrical Lectures of Isaac Barrow, Open Court Publishing Co., 1916.
|
14 |
Child, J. M., The Geometrical Lectures of Isaac Barrow (Lecture X), The Treasury of Mathematics (H. O. Midonick Ed.), Philosophical Library, New York, 1965, pp. 106-115.
|
15 |
Coolidge, J. L.,"The Story of Tangents", The American Mathematical Monthly 58(1951), Issue 7, pp. 449-462.
DOI
ScienceOn
|
16 |
Courant, R., Differential and Integral Calculus, Vol. 1, Interscience Publishers-John Wiley & Sons, Inc., 1988.
|
17 |
Edwards, C. H., The Historical Development of the Calculus, Springer-Verlag, New York, 1979.
|
18 |
Feingold, M.,"Newton, Leibniz and Barrow Too: An Attempt at a Reinterpretation", Isis 84(1993), No. 2, pp. 310-338.
|
19 |
Flashman, M. E.,"Historical Motivation for a Calculus Course: Barrow' s Theorem", Vita Mathematica (R. Calinger Ed.) MAA Notes 40(1996), pp. 309-315.
|
20 |
Gonzalez-Velasco, E. A., Journey Through Mathematics, Springer, New York, 2012.
|
21 |
Jahnke, H. N., The use of original sources in the classroom: empirical research findings, History in Mathematics Education (J. Fauvel, & J. V. Maanen Eds.), Kluwer Academic Publishers, Dordrecht, 2000, pp. 291-328.
|
22 |
Jankvist, U. T.,"A categorization of the whys and hows of using history in mathematics education,"Educational Studies in Mathematics 71(2009), No. 3, pp. 235-261.
DOI
|
23 |
Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press, New York, 1972.
|
24 |
Mahoney, M. S., Barrow's mathematics: between ancients and moderns, Before Newton: The Life and times of Isaac Barrow (M. Feingold Ed.), Cambridge University Press, New York, 1990, pp. 179-249.
|
25 |
More, L. T., Isaac Newton: A biography, Dover Publications, New York, 1962.
|
26 |
Struik, D. J., A Source Book in Mathematics: 1200-1800, Harvard University Press, 1969.
|
27 |
Radford, L.,"Historical formation and student understanding of mathematics,"History in Mathematics Education (J. Fauvel, & J. V. Maanen Eds.), Kluwer Academic Publishers, Dordrecht, 2000, pp. 143-170.
|
28 |
Sierpinska, A., Understanding in Mathematics, The Palmer Press, Washing, DC, 1994.
|
29 |
Stewart, J., Calculus-Early Transcendentals, Belmont, Brooks & Cole., CA, 2008.
|
30 |
Whiteside, D. T.", Isaac Newton: Birth of aMathematician,"Notes and Records of the Royal Society of London 19(1964), pp. 53-62.
DOI
|