Browse > Article
http://dx.doi.org/10.14191/Atmos.2022.32.1.039

Relationship between the QBO and Surface Air Temperature in the Korean Peninsula  

Park, Chang-Hyun (School of Earth and Environmental Sciences, Seoul National University)
Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Atmosphere / v.32, no.1, 2022 , pp. 39-49 More about this Journal
Abstract
The relationship between the Quasi-Biennial Oscillation (QBO) and the surface air temperature (SAT) in the Korean Peninsula is investigated for the period of 1979~2019. The QBO shows a statistically significant causal relationship with the Korean SAT in early spring when the El Niño-Southern Oscillation (ENSO)'s effect is relatively weak. In particular, when the QBO wind at 70 hPa is westerly, the Korean SAT becomes colder than normal in March. This relationship in March, which is statistically significant, is valid not only for March QBO but also for February QBO, indicating that the QBO is leading the Korean SAT. The Granger causality test indeed shows a causal relationship between February QBO and March Korean SAT. The QBO-Korean SAT relationship is more pronounced in the southeastern part of the Korean Peninsula. As the QBO-related circulation anomalies are evident in the North Pacific and the eastern Eurasia, they induce the horizontal temperature advection to the southeastern part of the Korean Peninsula. This result suggests that the QBO could be useful for improving seasonal prediction of the Korean SAT in March.
Keywords
Quasi-Biennial Oscillation; Surface air temperature; Korean Peninsula; Granger causality test;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Akaike, H., 1974: A new look at the statistical model identification. IEEE T. Automat. Contr., 19, 716-723.   DOI
2 Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179-229.   DOI
3 Barnes, E. A., and I. R. Simpson, 2017: Seasonal sensitivity of the Northern Hemisphere jet streams to arctic temperatures on subseasonal time scales. J. Climate, 30, 10117-10137, doi:10.1175/JCLI-D-17-0299.1.   DOI
4 Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 2552-2568.   DOI
5 Ding, M., Y. Chen, and S. L. Bressler, 2006: Granger causality: basic theory and application to neuroscience. In B. Schelter et al. Eds., Handbook of time series analysis: Recent Theoretical Developments and Applications, Wiley-VCH, 437-460.
6 Garfinkel, C. I., and D. L. Hartmann, 2011a: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 1273-1289, doi:10.1175/2011JAS3665.1.   DOI
7 Garfinkel, C. I., and D. L. Hartmann, 2011b: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part II: Perpetual winter WACCM runs. J. Atmos. Sci., 68, 2026-2041, doi:10.1175/2011JAS3702.1.   DOI
8 Geweke, J. F., 1984: Measures of conditional linear dependence and feedback between time series. J. Am. Stat. Assoc., 79, 907-915.   DOI
9 Gray, L. J., J. A. Anstey, Y. Kawatani, H. Lu, S. Osprey, and V. Schenzinger, 2018: Surface impacts of the quasi biennial oscillation. Atmos. Chem. Phys., 18, 8227-8247, doi:10.5194/acp-18-8227-2018.   DOI
10 Granger, C. W. J., 1969: Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424-438.   DOI
11 Guo, S., A. K. Seth, K. M. Kendrick, C. Zhou, and J. Feng, 2008: Partial Granger causality-eliminating exogenous inputs and latent variables. J. Neurosci. Methods, 172, 79-93.   DOI
12 Burnham, K. P., and D. R. Anderson, 2004: Multimodel inference: understanding AIC and BIC in model selection. Sociol. Method. Res., 33, 261-304.   DOI
13 Hsiao, C., 1981: Autoregressive modelling and money-income causality detection. J. Monetary Econ., 7, 85-106.   DOI
14 Han, B.-R., Y. Lim, H.-J. Kim, and S.-W. Son, 2018: Development and evaluation of statistical prediction model of monthly-mean winter surface air temperature in Korea. Atmosphere, 28, 153-162, doi:10.14191/Atmos.2018.28.2.153 (in Korean with English abstract).   DOI
15 Holton, J. R., and H.-C. Tan, 1982: The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere. J. Meteorol. Soc. Jpn. Ser. II, 60, 140-148.   DOI
16 Hood, L. L., M. A. Redman, W. L. Johnson, and T. J. Galarneau Jr., 2020: Stratospheric influences on the MJO-Induced Rossby wave train: Effects on intraseasonal climate. J. Climate, 33, 365-389, doi:10.1175/JCLI-D-18-0811.1.   DOI
17 Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Climate, 30, 8179-8205, doi:10.1175/JCLI-D-16-0836.1.   DOI
18 Lee, J. H., and P. Y. Julien, 2016: ENSO impacts on temperature over South Korea. Int. J. Climatol., 36, 3651-3663, doi:10.1002/joc.4581.   DOI
19 Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II, 93, 5-48, doi:10.2151/jmsj.2015-001.   DOI
20 Kug, J.-S., M.-S. Ahn, M.-K. Sung, S.-W. Yeh, H.-S. Min, and Y.-H. Kim, 2010: Statistical relationship between two types of El Nino events and climate variation over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 46, 467-474, doi:10.1007/s13143-010-0027-y.   DOI
21 Lee, J. H., M. J. Kang, and H. Y. Chun, 2019: Differences in the tropical convective activities at the opposite phases of the quasi-biennial oscillation. Asia-Pac. J. Atmos. Sci., 55, 317-336, doi:10.1007/s13143-018-0096-x.   DOI
22 Park, C.-H., S.-W. Son, and J. Choi, 2018: Granger causality test between ENSO and winter climate variability over the Korean Peninsula. J. Climate Change Res., 9, 171-179, doi:10.15531/KSCCR.2018.9.2.171 (in Korean with English abstract).   DOI
23 Ma, T., W. Chen, J. Huangfu, L. Song, and Q. Cai, 2021: The observed influence of the Quasi-Biennial Oscillation in the lower equatorial stratosphere on the East Asian winter monsoon during early boreal winter. Int. J. Climatol., 41, 6254-6269, doi:10.1002/joc.7192.   DOI
24 Madden, R. A., and P. R. Julian, 1971: Detection of a 40~50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702-708.   DOI
25 McGraw M. C., and E. A. Barnes, 2018: Memory matters: A case for Granger causality in climate variability studies. J. Climate, 31, 3289-3300, doi:10.1175/JCLID-17-0334.1.   DOI
26 Li, X., M. Sun, D. Han, C. Gao, H. He, and I. A. Mensah, 2018: Dynamic features of China's photovoltaic listed companies in different periods: Based on partial Granger causality network. J. Renew. Sustain. Ener., 10, 045904, doi:10.1063/1.5023131.   DOI
27 Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric Control of the Madden-Julian Oscillation. J. Climate, 30, 1909-1922, doi:10.1175/JCLI-D-16-0620.1.   DOI
28 Luo, X., and Y. Zhang, 2015: The linkage between upper-level jet streams over East Asia and East Asian winter monsoon variability. J. Climate, 28, 9013-9028, doi:10.1175/JCLI-D-15-0160.1.   DOI
29 Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200-2208.   DOI
30 Youssofzadeh, V., G. Prasad, M. Naeem, and K. Wong-Lin, 2016: Temporal information of directed causal connectivity in multi-trial ERP data using partial Granger causality. Neuroinform., 14, 99-120, doi:10.1007/s12021-015-9281-6.   DOI
31 Rao, J., C. I. Garfinkel, and I. P. White, 2020: How does the Quasi-Biennial Oscillation affect the boreal winter tropospheric circulation in CMIP5/6 models? J. Climate, 33, 8975-8996, doi:10.1175/JCLI-D-20-0024.1.   DOI
32 Wang, W., B. T. Anderson, R. K. Kaufmann, and R. B. Myneni, 2004: The relation between the North Atlantic Oscillation and SSTs in the North Atlantic basin. J. Climate, 17, 4752-4759.   DOI
33 Seo, J., W. Choi, D. Youn, D.-S. R. Park, and J. Y. Kim, 2013: Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific. Geophys. Res. Lett., 40, 5949-5953, doi: 10.1002/2013GL058266.   DOI
34 Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 1347-1365.   DOI
35 Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 1421-1428.   DOI
36 Ruti, P. M., V. Lucarini, A. Dell'Aquila, S. Calmanti, and A. Speranza, 2006: Does the subtropical jet catalyze the midlatitude atmospheric regimes? Geophys. Res. Lett., 33, L06814.   DOI