Assessment on the East Asian Summer Monsoon Simulation by Improved Global Coupled (GC) Model |
Kim, Ji-Yeong
(Operational Systems Development Department, National Institute of Meteorological Sciences)
Hyun, Yu-Kyung (Operational Systems Development Department, National Institute of Meteorological Sciences) Lee, Johan (Operational Systems Development Department, National Institute of Meteorological Sciences) Shin, Beom-Cheol (Operational Systems Development Department, National Institute of Meteorological Sciences) |
1 | Walters, D., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 1909-1963, doi:10.5194/gmd-12-1909-2019. DOI |
2 | Williams, K. D., and Coauthors, 2018: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J. Adv. Model. Earth Sy., 10, 357-380, doi:10.1002/2017MS001115. DOI |
3 | Guo, Q.-Y., 1983: The summer monsoon intensity index in East Asia and its variation. Acta Geogr. Sin., 38, 208- 217 (in Chinese). |
4 | Zhou, T., and Z. Li, 2002: Simulation of the east asian summer monsoon using a variable resolution atmospheric GCM. Climate Dyn., 19, 167-180. DOI |
5 | Chen, J., P. Zhao, S. Yang, G. Liu, and X. Zhou, 2013: Simulation and dynamical prediction of the summer Asian-Pacific Oscillation and associated climate anomalies by the NCEP CFSv2. J. Climate, 26, 3644-3656, doi:10.1175/JCLI-D-12-00368.1. DOI |
6 | Kang, I.-S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383-395. DOI |
7 | Kim, H.-R., J. Lee, Y.-K. Hyun, and S.-O. Hwang, 2021: The KMA Global Seasonal forecasting system (GloSea6) - Part 1: operational system and improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos.2021.31.3.341 (in Korean with English abstract). DOI |
8 | Kwon, S.-H., K.-O. Boo, S. Shim, and Y.-H. Byun, 2017: Evaluation of the East Asian summer monsoon season simulated in CMIP5 models and the future change. Atmosphere, 27, 133-150, doi:10.14191/Atmos.2017. 27.2.133 (in Korean with English abstract). DOI |
9 | Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev., 8, 2221-2230, doi:10.5194/gmd-8-2221-2015. DOI |
10 | Xin, X., T. Wu, W. Jie, and J. Zhang, 2021: Impact of higher resolution on precipitation over China in CMIP6 HighResMIP models. Atmosphere, 12, 762, doi:10.3390/atmos12060762. DOI |
11 | Ridley, J. K., E. W. Blockley, A. B. Keen, J. G. L. Rae, A. E. West, and D. Schroeder, 2018: The sea ice model component of HadGEM3-GC3.1. Geosci. Model Dev., 11, 713-723, doi:10.5194/gmd-11-713-2018. DOI |
12 | Seo, K.-H., J.-H. Son, J.-Y. Lee, and H.-S. Park, 2015: Northern East Asian monsoon precipitation revealed by airmass variability and its prediction. J. Climate, 28, 6221-6233, doi:10.1175/JCLI-D-14-00526.1. DOI |
13 | Shonk, J. K. P., A. G. Turner, A. Chevuturi, L. J. Wilcox, A. J. Dittus, and E. Hawkins, 2020: Uncertainty in aerosol radiative forcing impacts the simulated global monsoon in the 20th century. Atmos. Chem. Phys., 20, 14903-14915, doi:10.5194/acp-20-14903-2020. DOI |
14 | Storkey, D., and Coauthors, 2018: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions. Geosci. Model Dev., 11, 3187-3213, doi:10.5194/gmd-11-3187-2018. DOI |
15 | Wang, S., and H. Zuo, 2016: Effect of the East Asian westerly jet;s intensity on summer rainfall in the Yangtze River valley and its mechanism. J. Climate, 29, 2395-2406, doi:10.1175/JCLI-D-15-0259.1. DOI |
16 | Sui, C.-H., P.-H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34, L11701. DOI |
17 | Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629-638. DOI |
18 | Wang, B., Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449-4463. DOI |
19 | Megann, A., D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha, 2014: GO5.0: the joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069-1092, doi:10.5194/gmd-7-1069-2014. DOI |
20 | Liu, Y., P. H. Daum, H. Guo, and Y. Peng, 2008: Dispersion bias, dispersion effect, and the aerosol-cloud conundrum. Environ. Res. Lett., 3, 045021. DOI |
21 | Rodriguez, J. M., S. F. Milton, and C. Marzin, 2017: The East Asian atmospheric water cycle and monsoon circulation in the Met Office Unified Model. J. Geophys. Res. Atmos., 122, 10246-10265. DOI |
22 | Cheng, T. F., M. Lu, and L. Dai, 2019: The zonal oscillation and the driving mechanisms of the extreme western North Pacific subtropical high and its impacts on East Asian summer precipitation. J. Climate, 32, 3025-3050, doi:10.1175/JCLI-D-18-0076.1. DOI |
23 | Zhou, T., D. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon recent progress and state of affairs. Meteorol. Z., 455-467. |
24 | Stephan, C. C., N. P. Klingaman, P. L. Vidale, A. G. Turner, M.-E. Demory, and L. Guo, 2018: Intraseasonal summer rainfall variability over China in the MetUM GA6 and GC2 configurations. Geosci. Model Dev., 11, 3215-3233, doi:10.5194/gmd-11-3215-2018. DOI |
25 | Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487-1520, doi:10.5194/gmd-10-1487-2017. DOI |
26 | Andrews, T., and Coauthors, 2019: Forcings, feedbacks, and climate sensitivity in HadGEM3-GC3.1 and UKESM1. J. Adv. Model. Earth Sy., 11, 4377-4394, doi:10.1029/2019MS001866. DOI |
27 | Flocco, D., D. L. Feltham, and A. K. Turner, 2010: Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. Oceans, 115, C08012, doi:10.1029/2009JC005568. DOI |
28 | Wang, B., and LinHo, 2002: Rainy season of the Asian- Pacific summer monsoon. J. Climate, 15, 386-398. DOI |
29 | Wang, Y., B. Wang, and J.-H. Oh, 2001: Impact of the preceding El Nino on the East Asian summer atmosphere circulation. J. Meteor. Soc. Japan Ser. II, 79, 575-588. DOI |
30 | Ha, K.-J., Y.-W. Seo, J.-Y. Lee, R. H. Kripalani, and K.-S. Yun, 2018: Linkages between the South and East Asian summer monsoons: a review and revisit. Climate Dyn, 51, 4207-4227, doi:10.1007/s00382-017- 3773-z. DOI |
31 | Han, J., and H. Wang, 2007: Interdecadal variability of the East Asian summer monsoon in an AGCM. Adv. Atmos. Sci., 24, 808-818. DOI |
32 | Kwon, M., J.-G. Jhun, B. Wang, S.-I. An, and J.-S. Kug, 2005: Decadal change in relationship between east Asian and WNP summer monsoons. Geophys. Res. Lett., 32, L16709. DOI |
33 | Hong, S.-Y., 2004: Comparison of heavy rainfall mechanisms in Korea and the central US. J. Meteor. Soc. Japan Ser. II, 82, 1469-1479. DOI |
34 | Boo, K.-O., G. Martin, A. Sellar, C. Senior, and Y.-H. Byun, 2011: Evaluating the East Asian monsoon simulation in climate models. J. Geophys. Res. Atmos., 116, D01109, doi:10.1029/2010JD014737. DOI |
35 | Boutle, I. A., S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: observations and microphysical effects. Q. J. R. Meteorol. Soc., 140, 583-594, doi:10.1002/qj.2140. DOI |
36 | Lee, S.-J., Y.-K. Hyun, S.-M. Lee, S.-O. Hwang, J. Lee, and K.-O. Boo, 2020: Prediction skill for East Asian summer monsoon indices in a KMA Global Seasonal Forecasting System (GloSea5). Atmosphere, 30, 293-309, doi:10.14191/Atmos.2020.30.3.293 (in Korean with English abstract). DOI |
37 | Yihui, D., and J. C. L. Chan, 2005: The East Asian summer monsoon: an overview. Meteorol. Atmos. Phys., 89, 117-142. DOI |
38 | Yun, K.-S., J.-Y. Lee, and K.-J. Ha, 2014: Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient. J. Geophys. Res. Atmos., 119, 8104-8116, doi:10.1002/2014JD021692. DOI |
39 | Lau, K.-M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 2461-2482. DOI |
40 | Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950~2000. Climate Dyn., 34, 501-514, doi:10.1007/s00382-008-0482-7. DOI |
41 | Chang, C.-P., and G. T.-J. Chen, 1995: Tropical circulations associated with southwest monsoon onset and westerly surges over the South China Sea. Mon. Wea. Rev., 123, 3254-3267. DOI |