Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.1.045

Synoptic Structures and Precipitation Impact of Extratropical Cyclones Influencing on East Asia Megacities: Seoul, Beijing, Tokyo  

Kim, Donghyun (School of Earth and Environmental Sciences, Seoul National University)
Lee, Jaeyeon (School of Earth and Environmental Sciences, Seoul National University)
Kang, Joonsuk M. (School of Earth and Environmental Sciences, Seoul National University)
Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Atmosphere / v.31, no.1, 2021 , pp. 45-60 More about this Journal
Abstract
The synoptic structures and precipitation impact of extratropical cyclones (ETCs) influencing on the three adjacent megacities in East Asia, i.e., Beijing (Beijing ETCs), Seoul (Seoul ETCs) and Tokyo (Tokyo ETCs), are analyzed using ERA-interim reanalysis data from 1979 to 2018. Individual ETC tracks are identified with the automated tracking algorithm applied to 850-hPa relative vorticity field. Among four seasons, ETCs are the most frequent in spring. In this season, Beijing ETCs are mainly generated at the leeside of Altai-Sayan Mountains and primarily develop through interaction between the upper-level trough and lower-level cyclonic circulation. For Seoul ETCs, the leesides of Altai-Sayan Mountains (Seoul-N ETCs) and Tibetan Plateau (Seoul-S ETCs) are main genesis regions and the features of ETCs are different according to the genesis regions. While Seoul-N ETCs mainly develope by the same mechanism of Beijing ETCs, strong diabatic heating due to vapor transport is responsible for the genesis of Seoul-S ETCs. Tokyo ETCs are originated from the leesides of Tibetan Plateau and Kuroshio-Oyashio Extension regions, and strong diabatic heating as well as interaction between upper and lower levels determines the genesis of these ETCs. The precipitation impact resulting from ETCs become strong in the order of Beijing ETCs, Seoul-N ETCs, Seoul-S ETCs, and Tokyo ETCs and accounts for up to 40%, 27%, 52%, and 70% of regional precipitation, respectively.
Keywords
Extratropical cyclones; precipitation; East Asia megacities;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, Z., F. M. Ralph, and M. Zheng, 2019: The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett., 46, 1814-1823, doi:10.1029/2018GL079071.   DOI
2 Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 1999-2002, doi:10.1029/94GL01710.   DOI
3 Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725-735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.   DOI
4 Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 3458-3465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.   DOI
5 Chen, L., B. Tan, N. G. Kvamsto, and O. M. Johannessen, 2014: Wintertime cyclone/anticyclone activity over China and its relation to upper tropospheric jets. Tellus A, 66, 21889, doi:10.3402/tellusa.v66.21889.   DOI
6 Ashley, W. S., and A. W. Black, 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717-725, doi:10.1175/2007JAMC1689.1.   DOI
7 Booth, J. F., H. E. Rieder, D. E. Lee, and Y. Kushnir, 2015: The paths of extratropical cyclones associated with wintertime high-wind events in the Northeastern United States. J. Appl. Meteor. Climatol., 54, 1871-1885, doi:10.1175/JAMC-D-14-0320.1.   DOI
8 Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163-2183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.   DOI
9 Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1991: Synoptic climatology of cyclogenesis over East Asia, 1958-1987. Mon. Wea. Rev., 119, 1407-1418, doi:10.1175/1520-0493(1991)119<1407:SCOCOE>2.0.CO;2.   DOI
10 Lee, J., S.-W. Son, H.-O. Cho, J. Kim, D.-H. Cha, J. R. Gyakum, and D. Chen, 2019: Extratropical cyclones over East Asia: climatology, seasonal cycle, and long-term trend. Clim. Dyn., 54, 1131-1144, doi:10.1007/s00382-019-05048-w.   DOI
11 Li, W.-L., R.-D. Xia, J.-H. Sun, S.-M. Fu, L.-Z. Jiang, B.-F. Chen, and F.-Y. Tian, 2019: Layer-wise formation mechanisms of an entire-troposphere-thick extratropical cyclone that induces a record-breaking catastrophic rainstorm in Beijing. J. Geophys. Res. Atmos., 124, 10567-10591, doi:10.1029/2019JD030868.   DOI
12 Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979-2010). Part I: climatology and potential vorticity evolution. J. Climate, 27, 3-26, doi:10.1175/JCLI-D-12-00720.1.   DOI
13 Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 6770-6780, doi:10.1175/JCLI-D-11-00705.1.   DOI
14 Pfahl, S., and M. Sprenger, 2016: On the relationship between extratropical cyclone precipitation and intensity. Geophys. Res. Lett., 43, 1752-1758, doi:10.1002/2016GL068018.   DOI
15 Plant, R. S., G. C. Craig, and S. L. Gray, 2003: On a threefold classification of extratropical cyclogenesis. Q. J. R. Meteorol. Soc., 129, 2989-3012, doi:10.1256/qj.02.174.   DOI
16 Ren, X., X. Yang, and C. Chu, 2010: Seasonal variations of the synoptic-scale transient eddy activity and polar front jet over East Asia. J. Climate, 23, 3222-3233, doi:10.1175/2009JCLI3225.1.   DOI
17 Adachi, S., and F. Kimura, 2007: A 36-year climatology of surface cyclogenesis in East Asia using high-resolution reanalysis data. SOLA, 3, 113-116, doi:10.2151/sola.2007-029.   DOI
18 Chung, Y., K. D. Hage, and E. R. Reinelt, 1976: On lee cyclogenesis and airflow in the Canadian Rocky Mountains and the East Asian Mountains. Mon. Wea. Rev., 104, 879-891, doi:10.1175/1520-0493(1976)104<0879:OLCAAI>2.0.CO;2.   DOI
19 Dacre, H. F., O. Martinez-Alvarado, and C. O. Mbengue, 2019: Linking atmospheric rivers and warm con-veyor belt airflows. J. Hydrometeor., 20, 1183-1196, doi:10.1175/JHM-D-18-0175.1.   DOI
20 Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.   DOI
21 Whittaker, L. M., and L. H. Horn, 1984: Northern Hemisphere extratropical cyclone activity for four mid-season months. Int. J. Climatol., 4, 297-310, doi:10.1002/joc.3370040307.   DOI
22 Rosenfeld, A., and A. C. Kak, 1976: Digital picture processing. Academic Press, 490 pp.
23 Sinclair, M. R., 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12, 595-612, doi:10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2.   DOI
24 Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849-874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.   DOI
25 Takahashi, H. G., and T. Yamazaki, 2020: Impact of sea surface temperature near Japan on the extra-tropical cyclone induced heavy snowfall in Tokyo by a regional atmospheric model. SOLA, 16, 206-211, doi:10.2151/sola.2020-035.   DOI
26 Takano, I., 2002: Analysis of an intense winter extratropical cyclone that advanced along the south coast of Japan. J. Meteor. Soc. Japan Ser.II, 80, 669-695, doi:10.2151/jmsj.80.669.   DOI
27 Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 2234-2250, doi:10.1175/JAS-D-12-0226.1.   DOI
28 Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607-626, doi:10.1175/JHM583.1.   DOI
29 Dowdy, A. J., and J. L. Catto, 2017: Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci. Rep., 7, 40359, doi:10.1038/srep40359.   DOI
30 Agel, L., M. Barlow, J.-H. Qian, F. Colby, E. Douglas, and T. Eichler, 2015: Climatology of daily precipitation and extreme precipitation events in the Northeast United States. J. Hydrometeor., 16, 2537-2557, doi:10.1175/JHM-D-14-0147.1.   DOI
31 Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL053866.   DOI
32 Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the Northwestern Pacific region. Mon. Wea. Rev., 132, 1121-1142, doi:10.1175/1520-0493(2004)132<1121:SAEOED>2.0.CO;2.   DOI
33 Zhang, Y., Y. Ding, and Q. Li, 2012: A climatology of extratropical cyclones over East Asia during 1958-2001. Acta. Meteorol. Sin., 26, 261-277, doi:10.1007/s13351-012-0301-2.   DOI
34 Eiras-Barca, J., A. M. Ramos, J. G. Pinto, R. M. Trigo, M. L. R. Liberato, and G. Miguez-Macho, 2018: The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Syst. Dynam., 9, 91-102, doi:10.5194/esd-9-91-2018.   DOI
35 Guo, Y., T. Shinoda, B. Guan, D. E. Waliser, and E. K. M. Chang, 2020: Statistical relationship between atmospheric rivers and extratropical cyclones and anticyclones. J. Climate, 33, 7817-7834, doi:10.1175/JCLI-D-19-0126.1.   DOI
36 Gyakum, J. R., and R. E. Danielson, 2000: Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the Western North Pacific. Mon. Wea. Rev., 128, 851-863, doi:10.1175/1520-0493(2000)128<0851:AOMPTO>2.0.CO;2.   DOI
37 Heo, K.-Y., J.-S. Shim, J.-I. Kwon, J.-Y. Jeong, K.-S. Park, and J.-W. Choi, 2013: Abnormal storm waves around the Korean Peninsula: A case study of an extratropical explosive cyclone over East Sea. J. Coastal Res., 65, 720-725, doi:10.2112/SI65-122.1.   DOI
38 Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573-2586, doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.   DOI
39 Agel, L., M. Barlow, F. Colby, H. Binder, J. L. Catto, A. Hoell, and J. Cohen, 2019: Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Clim. Dyn., 52, 1739-1760, doi:10.1007/s00382-018-4223-2.   DOI
40 Agel, L., M. Barlow, S. B. Feldstein, and W. J. Gutowski Jr., 2018: Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Clim. Dyn., 50, 1819-1839, doi:10.1007/s00382-017-3724-8.   DOI
41 Ahmadi-Givi. F., 2002: A review of the role of latent heat release in extratropical cyclones within potential vorticity framework. J. Earth Space Phys., 28, 7-20.
42 Ahmadi-Givi. F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Q. J. R. Meteorol. Soc., 130, 295-323, doi:10.1256/qj.02.226.   DOI
43 Kamae, Y., W. Mei, and S.-P. Xie, 2017: Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteor. Soc. Japan Ser.II, 95, 411-431, doi:10.2151/jmsj.2017-027.   DOI
44 Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 1362-1373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.   DOI
45 Hoskins, B. J., and K. I. Hodges, 2002: New Perspectives on the Northern Hemisphere Winter Storm Tracks. J. Atmos. Sci., 59, 1041-1061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.   DOI
46 Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc., 111, 877-946, doi:10.1002/qj.49711147002.   DOI
47 Kang, J. M., J. Lee, S.-W. Son, J. Kim, and D. Chen, 2020: The rapid intensification of East Asian cyclones around the Korean Peninsula and their surface impacts. J. Geophys. Res. Atmos., 125, e2019JD031632, doi:10.1029/2019JD031632.   DOI
48 Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 59-74, doi:10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.   DOI
49 Leckebusch, G. C., and U. Ulbrich, 2004: On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob. Planet. Change, 44, 181-193, doi:10.1016/j.gloplacha.2004.06.011.   DOI
50 Lee, T. Y., and Y. H. Kim, 2007: Heavy precipitation systems over the Korean peninsula and their classification. J. Korean Meteor. Soc., 43, 367-396.