Browse > Article
http://dx.doi.org/10.14191/Atmos.2020.30.4.421

Effects of the Realistic Description for the Terminal Fall Velocity-Diameter Relationship of Raindrops on the Simulated Summer Precipitation over South Korea  

Kim, Da-Seul (Department of Astronomy and Atmospheric Sciences, School of Earth System Sciences, Kyungpook National University)
Lim, Kyo-Sun Sunny (Department of Astronomy and Atmospheric Sciences, School of Earth System Sciences, Kyungpook National University)
Kim, Kwonil (Department of Astronomy and Atmospheric Sciences, School of Earth System Sciences, Kyungpook National University)
Lee, GyuWon (Department of Astronomy and Atmospheric Sciences, School of Earth System Sciences, Kyungpook National University)
Publication Information
Atmosphere / v.30, no.4, 2020 , pp. 421-437 More about this Journal
Abstract
The effects of the terminal fall velocity-diameter relationship for raindrops, which is prescribed based on the measurement, on the simulated surface precipitation over Korea during summer season were investigated in our study. Two rainfall cases, 1-month summer precipitation and mesoscale rainfall, have been simulated using the Weather Research and Forecasting (WRF) model. The selected cloud microphysics parameterizations are WRF Single-Moment 5-class (WSM5) and WRF Single-Moment 6-class (WSM6) in the WRF model. The measured terminal fall-diameter relationship for raindrops by Gunn and Kinzer (1949) was applied in both WSM5 and WSM6. The sensitivity experiments with WSM5 and WSM6, applying the measured fall-diameter relationship, presents the different responses in simulated precipitation amount for the 1-month summer precipitation case. Precipitation increases with WSM5, thus enhancing the precipitation statistical skills. However, precipitation decreases with WSM6 leading to the deterioration of precipitation statistical skills. For the mesoscale rainfall case, precipitation increases with both WSM5 and WSM6, which further enhances the positive bias in precipitation amount.
Keywords
Terminal fall velocity; raindrops; WSM6; WSM5; summer precipitation;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Iacono, M. J., J. S. Delamere, E. J. Mlawer, M.W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, D13103.   DOI
2 Tang, Q., H. Xiao, C. Guo, and L. Feng, 2014: Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos. Res., 135, 59-75, doi:10.1016/j.atmosres.2013.08.003.   DOI
3 Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095-5115.   DOI
4 Im, E.-S., J.-B. Ahn, A. R. Remedio, and W.-T. Kwon, 2008: Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: Focus on the Korean peninsula. Int. J. Climatol., 28, 1861-1877.   DOI
5 Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2016: Robust intensification of hydroclimatic intensity over East Asia from multi-model ensemble regional projections. Theor. Appl. Climatol., 129, 1241-1254, doi:10.1007/s00704-016-1846-2.   DOI
6 Joss, J., and A. Waldvogel, 1970: A method to improve the accuracy of radar-measured amounts of precipitation. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 237-238.
7 Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181.   DOI
8 Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802.   DOI
9 Kim, K.-E., K.-D. Min, S.-G. Park, D.-I. Lee, K.-M. Lee, I.-H. Yoon, and Y.-S. Moon, 1996: Analysis of fall velocities of precipitation particles and wind fields by a single Doppler radar. J. Korean Meteor. Soc., 32, 51-70 (in Korean with English abstract).
10 Kim, S., H.-J. Song, and H. Lee, 2019: Mesoscale features and forecasting guidance of heavy rain types over the Korean peninsula. Atmosphere, 29, 463-480, doi:10.14191/Atmos.2019.29.4.463 (in Korean with English abstract).   DOI
11 Laws, J. O., 1941: Measurements of the fall-velocity of water-drops and raindrops. Eos, Trans. Amer. Geophys. Union, 22, 709-721.   DOI
12 Lee, G., and K. Kim, 2019: International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games (ICE-POP 2018). Abstract, AGU fall meeting, San Francisco, CA, USA.
13 Ahn, J.-B., K.-M. Shim, M.-P. Jung, H.-G. Jeong, Y.-H. Kim, and E.-S. Kim, 2018: Predictability of temperature over South Korea in PNU CGCM and WRF hindcast. Atmosphere, 28, 479-490, doi:10.14191/Atmos.2018.28.4.479 (in Korean with English abstract).   DOI
14 Barthazy, E., S. Goke, R. Scheford, and D. Hogl, 2004: An optical array instrument for shape and fall velocity measurements of hydrometeors. J. Atmos. Oceanic Technol., 21, 1400-1416.   DOI
15 Beard, K. V., and H. R. Pruppacher, 1969: A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J. Atmos. Sci., 26, 1066-1072.   DOI
16 Ahn, J.-B., J.-N. Hur, and K.-M. Shim, 2010a: A simulation of agro-climate index over the Korean peninsula using dynamical downscaling with a numerical weather prediction model. Korean J. Agr. Forest Meteorol., 12, 1-10, doi:10.5532/KJAFM.2010.12.1.001 (in Korean with English abstract).   DOI
17 Byon, J.-Y., Y.-J. Choi, and B.-K. Seo, 2010: Characteristics of a wind map over the Korean peninsula based on mesoscale model WRF. Atmosphere, 20, 195-210 (in Korean with English abstract).
18 Ahn, J.-B., J.-Y. Hong, and K.-M. Shim, 2010b: Agro-climatic indices changes over the Korean peninsula in CO2 doubled climate induced by atmosphere-oceanland-ice coupled general circulation model. Korean J. Agr. Forest Meteorol., 12, 11-22, doi:10.5532/KJAFM.2010.12.1.011 (in Korean with English abstract).   DOI
19 Boo, K.-O., W.-T. Kwon, and J.-K. Kim, 2004: Vegetation change in the regional surface climate over East Asia due to global warming using BIOME4. Il Nuovo Cimento, 27, 317-327.
20 Layeghi, B., S. Ghader, A. B. A. Ali, and M. Azadi, 2017: Sensitivity of WRF model simulations to physical parameterization over the Persian Gulf and Oman Sea during summer monsoon. Iran. J. Geophys., 11, 1-19.
21 Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585.   DOI
22 Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.   DOI
23 Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 6335-6532.   DOI
24 Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water drop lets in stagnant air. J. Meteor., 6, 243-248.   DOI
25 Heo, B.-H., and K.-E. Kim, 2001: A comparison of terminal velocity-drop size relationships to estimate drop size distribution from Doppler radar spectra. J. Korean Meteor. Soc., 37, 143-168 (in Korean with English abstract).
26 Lee, G., K.-E. Kim, K.-D. Min, I.-H. Yoon, and K.-M. Lee, 1998: Development and kinematic properties of tropical stratiform clouds retrieved by single Doppler radar. J. Korean Meteor. Soc., 34, 570-585 (in Korean with English abstract).
27 Hong, J.-Y., and J.-B. Ahn, 2015: Changes of early summer precipitation in the Korean Peninsula and nearby regions based on RCP simulations. J. Climate, 28, 3557-3578.   DOI
28 Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
29 Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120.   DOI
30 Lhermitte, R. M., and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Proc. 9th Wea. Radar Conf. Boston, Amer. Meteor. Soc., 218-223.
31 Lim, K.-S. S., 2019: Bulk-type cloud microphysics parameterization in atmospheric models. Atmosphere, 29, 227-239, doi:10.14191/Atmos.2019.29.2.227.   DOI
32 Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165-166.   DOI
33 Lim, K.-S, and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi:10.1175/2009MWR2968.1.   DOI
34 Lim, K.-S, and S.-Y. Hong, 2012: Investigation of aerosol indirect effects on simulated flash-flood heavy rainfall over Korea. Metero. Atmos. Phys., 118, 199-214, doi:10.1007/s00703-012-0216-6.   DOI
35 Liu, J. Y., and H. D. Orville, 1969: Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci., 26, 1283-1298.   DOI
36 Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136, 4773-4798.   DOI
37 Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665-1677.   DOI
38 Niu, S., X. Jia, J. Sang, X. Liu, C. Lu, and Y. Liu, 2010: Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteor. Climatol., 49, 632-645, doi:10.1175/2009JAMC2208.1.   DOI
39 Qian, T., F. Zhang, J. Wei, J. He, and Y. Lu, 2020: Diurnal characteristics of gravity waves over the Tibetan Plateau in 2015 summer using 10-km downscaled simulations from WRF-EnKF regional reanalysis. Atmosphere, 11, 631, doi:10.3390/atmos11060631.   DOI
40 Lim, K.-S, 2020: The effects of mass-size relationship for snow on the simulated surface precipitation. J. Korean Earth Sci. Soc., 41, 1-18, doi:10.5467/JKESS.2020. 41.1.1.   DOI
41 Rogers, R. R., 1964: An extension of the Z-R relationship for Doppler radar. Preprints, 11th Weather Radar Conf., Amer. Meteor. Soc., 158-161.
42 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp [Available online at https://opensky.ucar.edu/islandora/object/technotes%3A500/datastream/PDF/view].
43 Spilhaus, A. F., 1948: Raindrop size, shape and falling speed. J. Meteor., 5, 108-110.   DOI
44 Uplinger, W. G., 1981: A new formula for raindrop terminal velocity. Proc. The 20th Conference on Radar Meteorology, Boston, 389-391.
45 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.   DOI
46 Hong, S.-Y., K.-S. S. Lim, J.-H. Kim, J.-O. J. Lim, and J. Dudhia, 2009: Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J. Appl. Meteor. Climatol., 48, 61-76.   DOI
47 Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA, ATBD Version 4.5, 26 pp.