Browse > Article
http://dx.doi.org/10.14191/Atmos.2019.29.1.061

Analysis of Observation Environment with Sky Line and Skyview Factor using Digital Elevation Model (DEM), 3-Dimensional Camera Image and Radiative Transfer Model at Radiation Site, Gangneung-Wonju National University  

Jee, Joon-Bum (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
Kim, Bu-Yo (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
Lee, Kyu-Tae (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
Jang, Jeong-Pil (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University)
Publication Information
Atmosphere / v.29, no.1, 2019 , pp. 61-74 More about this Journal
Abstract
To investigate the observational environment, sky line and skyview factor (SVF) are calculated using a digital elevation model (DEM; 10 m spatial resolution) and 3 dimensional (3D) sky image at radiation site, Gangneung-Wonju National University (GWNU). Solar radiation is calculated using GWNU solar radiation model with and without the sky line and the SVF retrieved from the 3D sky image and DEM. When compared with the maximum sky line elevation from Skyview, the result from 3D camera is higher by $3^{\circ}$ and that from DEM is lower by $7^{\circ}$. The SVF calculated from 3D camera, DEM and Skyview is 0.991, 0.998, and 0.993, respectively. When the solar path is analyzed using astronomical solar map with time, the sky line by 3D camera shield the direct solar radiation up to $14^{\circ}$ with solar altitude at winter solstice. The solar radiation is calculated with minutely, and monthly and annual accumulated using the GWNU model. During the summer and winter solstice, the GWNU radiation site is shielded from direct solar radiation by the west mountain 40 and 60 minutes before sunset, respectively. The monthly difference between plane and real surface is up to $29.18M\;m^{-2}$ with 3D camera in November, while that with DEM is $4.87M\;m^{-2}$ in January. The difference in the annual accumulated solar radiation is $208.50M\;m^{-2}$ (2.65%) and $47.96M\;m^{-2}$ (0.63%) with direct solar radiation and $30.93M\;m^{-2}$ (0.58%) and $3.84M\;m^{-2}$ (0.07%) with global solar radiation, respectively.
Keywords
Solar radiation site; observation environment; skyview factor; digital elevation model; 3 dimensional camera;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Bernard, J., E. Bocher, G. Petit, and S. Palominos, 2018: Skyview factor calculation in urban context: computational performance and accuracy analysis of two open and free GIS tools. Climate, 6, 60, doi:10.3390/cli6030060.   DOI
2 Chou, M.-D., and M. J. Suarez, 1999: A Solar Radiation Parameterization (CLIRAD-SW) Developed at Goddard Climate and Radiation Branch for Atmospheric Studies. NASA Technical Memorandum. NASA/TM-1999-104606/VOL15, 51 pp.
3 Dozier, J., and J. Frew, 1990: Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE T. Geosci. Remote, 28, 963-969.   DOI
4 Dubayah, R. C., 1994: Modelling a solar radiation topoclimatology for the Rio Grande River Basin. J. Veg. Sci., 5, 627-640.   DOI
5 Dubayah, R. C., and P. M. Rich, 1995: Topographic solar radiation models for GIS. Int. J. Geogr. Inf. Syst., 9, 405-419.   DOI
6 Flerchinger, G. N., W. Xaio, D. Marks, T. J. Sauer, and Q. Yu, 2009: Comparison of algorithms for incoming atmospheric long-wave radiation. Water Resour. Res., 45, W03423, doi:10.1029/2008WR007394.   DOI
7 Fu, P., and P. M. Rich, 2000: The solar analyst 1.0 user manual. Helios Environmental Modeling Institute, LLC, 53 pp.
8 Heinle, A., A. Macke, and A. Srivastav, 2010: Automatic cloud classification of whole sky images. Atmos. Meas. Tech., 3, 557-567, doi:10.5194/amt-3-557-2010.   DOI
9 IPCC, 2013: Anthropogenic and Natural Radiative Forcing. In T. F. Stocker, Eds., Climate Change 2013: The Physical Basis: Contribution of Working Group I to the Fifth Assesssment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 659-740.
10 Hsia, Y. J., and W. S. Wang, 1985: Calculation of Potential Solar Irradiance on Slopes (in Chinese with English summary). Taiwan Forestry Research Institute, Research Note 001, 28 pp.
11 Jee, J.-B., and Y.-J. Choi, 2014: Conjugation of Landsat data for analysis of the land surface properties in capital area. J. Korean Earth Sciences Society, 35, 54-68, doi:10.5467/JKESS.2014.35.1.54 (in Korean with English abstract).   DOI
12 Jee, J.-B., Y.-D. Kim, W.-H. Lee, and K.-T. Lee, 2010: Temporal and spatial distributions of solar radiation with surface pyranometer data in South Korea. Journal of Korean Earth Sciences Society, 31, 720-737, doi:10.5467/JKESS.2010.31.7.720 (in Korean with English abstract).   DOI
13 Kim, B.-Y., J.-B. Jee, I.-S. Zo, and K.-T. Lee, 2016: Cloud cover retrieved from skyviewer: a validation with human observations. Asia-Pac. J. Atmos. Sci., 52, 1-10, doi:10.1007/s13143-015-0083-4.   DOI
14 Jee, J.-B., W.-H. Lee, I.-S. Zo, and K.-T. Lee, 2011: Correction of One-layer Solar Radiation Model by Multilayer Line-by-line Solar Radiation Model. Atmosphere, 21, 151-162 (in Korean with English abstract).   DOI
15 Jee, J.-B., M. Jang, C. Yi, I.-S. Zo, B.-Y. Kim, M.-S. Park, and Y.-J. Choi, 2016: Sensitivity analysis of the high-resolution WISE-WRF model with the use of surface roughness length in Seoul Metropolitan Areas. Atmosphere, 26, 111-126, doi:10.14191/Atmos.2016.26.1.111 (in Korean with English abstract).   DOI
16 Jee, J.-B., M. Jang, J.-S. Min, I.-S. Zo, B.-Y. Kim, and K.-T. Lee, 2017: Estimation of solar energy based on high-resolution digital elevation model on the Seoul area. Atmosphere, 27, 331-344, doi:10.14191/Atmos.2017.27.3.331 (in Korean with English abstract).   DOI
17 Johnson, R. W., and W. S. Hering, 1987: Automated Cloud Cover Measurements with a Solid-state Imaging System. In Proceedings of the Cloud Impacts on DOD Operations and Systems-1987, Workshop, 59-69.
18 Kim, B.-Y., J.-B. Jee, M.-J. Jeong, I.-S. Zo, and K.-T. Lee, 2015: Estimation of total cloud amount from skyviewer image data. J. Korean Earth Sciences Society, 36, 330-340 (in Korean with English abstract).   DOI
19 Long, C. N., D. W. Slater, and T. Tooman, 2001: Total Sky Imager (TSI) Model 880 Status and Testing Results. DOE/SC-ARM/TR-006, 36 pp, doi:10.2172/1020735.
20 Mouratidis, A., P. Briole, and K. Katsambalos, 2010: SRTM 3'' DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements: a case study from North Greece. Int. J. Remote Sens., 31, 6205-6222, doi:10.1080/01431160903401403.   DOI
21 Wilson, J. P., 2012: Digital terrain modeling. Geomorphology, 137, 107-121, doi:10.1016/j.geomorph.2011.03.012.   DOI
22 Park, M.-S., S.-H. Park, J.-H. Chae, M.-H. Choi, Y. Song, M. Kang, and J.-W. Roh, 2017: High-resolution Urban Observation Network for User-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmos. Meas. Tech., 10, 1575-1594, doi:10.5194/amt-10-1575-2017.   DOI
23 Rich, P. M., R. Dubayah, W. A. Hetrick, and S. C. Saving, 1994: Using viewshed models to calculate intercepted solar radiation: applications in ecology. American Society for Photogrammetry and Remote Sensing Technical papers, 524-529.
24 Shields, J. E., R. W. Johnson, and T. L. Koehler, 1993: Automated Whole Sky Imaging Systems for Cloud Field Assessment. Fourth Symposium on Global Change Studies, Amer. Meteor. Soc., 228-231.
25 Shields, J. E., M. E. Karr, R. W. Johnson, and A. R. Burden, 2013: Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview, Appl. Opt., 52, 1605-1616, doi:10.1364/AO.52.001605.   DOI
26 Van Niel, K. P., S. W. Laffan, and B. G. Lees, 2004: Effect of error in the DEM on environmental variables for predictive vegetation modeling. J. Veg. Sci., 15, 747-756.   DOI
27 Yi, C., Y. Shin, and S. M. An, 2017: A study on a comparison of skyview factors and a correlation with air temperature in the City. Atmosphere, 27, 483-498, doi:10.14191/Atmos.2017.27.4.483 (in Korean with English abstract).   DOI
28 Zo, I.-S., J.-B. Jee, and K.-T. Lee, 2014: Development of GWNU (Gangneung-Wonju National University) one-layer transfer model for calculation of solar radiation distribution of the Korea Peninsula. Asia-Pac. J. Atmos. Sci., 50, 575-584, doi: 10.1007/s13143-014-0047-0.   DOI