Browse > Article
http://dx.doi.org/10.14191/Atmos.2017.27.2.163

Response of the Terrestrial Carbon Exchange to the Climate Variability  

Sun, Minah (Climate Research Division, National Institute of Meteorological Sciences)
Cho, Chun-Ho (Climate Research Division, National Institute of Meteorological Sciences)
Kim, Youngmi (Climate Research Division, National Institute of Meteorological Sciences)
Lee, Johan (Climate Research Division, National Institute of Meteorological Sciences)
Boo, Kyoung-On (Climate Research Division, National Institute of Meteorological Sciences)
Byun, Young-Hwa (Climate Research Division, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.27, no.2, 2017 , pp. 163-175 More about this Journal
Abstract
The global terrestrial ecosystems have shown a large spatial variability in recent decades and represented a carbon sink pattern at mid-to-high latitude in Northern Hemisphere. However, there are many uncertainties in magnitude and spatial distribution of terrestrial carbon fluxes due to the effect of climate factors. So, it needs to accurately understand the spatio-temporal variations on carbon exchange flux with climate. This study focused on the effects of climate factors, .i.e. temperature, precipitation, and solar radiation, to terrestrial biosphere carbon flux. We used the terrestrial carbon flux that is simulated by a CarbonTracker, which performs data assimilation of global atmospheric $CO_2$ mole fraction measurements. We demonstrated significant interactions between Net Ecosystem Production (NEP) and climate factors by using the partial correlation analysis. NEP showed positive correlation with temperature at mid-to-high latitude in Northern Hemisphere but showed negative correlation pattern at $0-30^{\circ}N$. Also, NEP represented mostly negative correlation with precipitation at $60^{\circ}S-30^{\circ}N$. Solar radiation affected NEP positively at all latitudes and percentage of positive correlation at tropical regions was relatively lower than other latitudes. Spring and summer warming had potentially positive effect on NEP in Northern Hemisphere. On the other hand as increasing the temperature in autumn, NEP was largely reduced in most northern terrestrial ecosystems. The NEP variability that depends on climate factors also differently represented with the type of vegetation. Especially in crop regions, land carbon sinks had positive correlation with temperature but showed negative correlation with precipitation.
Keywords
Partial correlation; carbontracker; terrestrial carbon flux;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ballantyne, A. P., C. B. Alden, J. B. Miller, P. P. Tans, and J. W. C. White, 2012: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488, 70-72, doi:10.1038/nature11299.   DOI
2 Bastos, A., S. W. Running, C. Gouveia, and R. M. Trigo, 2013: The global NPP dependence on ENSO: La Nina and the extraordinary year of 2011. J. Geophys. Res., 118, 1247-1255, doi:10.1002/jgrg.20100.   DOI
3 Basu, S., and Coauthors, 2011: The seasonal cycle amplitude of total column $CO_2$: Factors behind the modelobservation mismatch. J. Geophys. Res., 116, D23306, doi:10.1029/2011JD016124.
4 Beer, C., and Coauthors, 2010: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834-838, doi:10.1126/science.1184984.   DOI
5 Bradford, M. A., and T. W. Crowther, 2013: Carbon use efficiency and storage in terrestrial ecosystems. New Phytol., 199, 7-9, doi:10.1111/nph.12334.   DOI
6 Bradford, M. A., A. D. Keiser, C. A. Davies, C. A. Mersmann, and M. S. Strickland, 2013: Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry, 113, 271-281, doi:10.1007/s10533-012-9822-0.   DOI
7 Chapin III, F. S., and Coauthors, 2005: Role of land-surface changes in arctic summer warming. Science, 310, 657, doi:10.1126/science.1117368.   DOI
8 Churkina, G., and S. W. Running, 1998: Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems, 1, 206-215.   DOI
9 Cleveland, C. C., S. C. Reed, and A. R. Townsend, 2006: Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology, 87, 492-503.   DOI
10 Cleveland, C. C., W. R. Wieder, S. C. Reed, and A. R. Townsend, 2010: Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology, 91, 2313-2323, doi:10.1890/09-1582.1.   DOI
11 Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.   DOI
12 Deng, F., and J. M. Chen, 2011: Recent global $CO_2$ flux inferred from atmospheric $CO_2$ observations and its regional analyses. Biogeosci., 8, 3263-3281, doi:10.5194/bg-8-3263-2011.   DOI
13 Fitzhugh, R. D., C. T. Driscoll, P. M. Groffman, G. L. Tierney, T. J. Fahey, and J. P. Hardy, 2001: Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry, 56, 215-238, doi:10.1023/A:1013076609950.   DOI
14 Friedlingstein, P., and I. Prentice, 2010: Carbon-climate feedbacks: A review of model and observation based estimates. Curr. Opin. Environ. Sustainability, 2, 251-257, doi:10.1016/j.cosust.2010.06.002.   DOI
15 Gurney, K. R., and Coauthors, 2002: Towards robust regional estimates of $CO_2$ sources and sinks using atmospheric transport models. Nature, 415, 626-630.   DOI
16 Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577-593, doi:10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.   DOI
17 Huijnen, V., and Coauthors, 2010: The global chemistry transport model TM5: Description and evaluation of the tropospheric chemistry version 3.0. Geosci. Model Dev., 3, 445-473, doi:10.5194/gmd-3-445-2010.   DOI
18 Heimann, M., and M. Reichstein, 2008: Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289-292.   DOI
19 Hobbie, S. E. and F. S. Chapin III, 1996: Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry, 35, 327-338, doi:10.1007/BF02179958.   DOI
20 House, J. I., I. C. Prentice, N. Ramankutty, R. A. Houghton, and M. Heimann, 2003: Reconciling apparent inconsistencies in estimates of terrestrial $CO_2$ sources and sinks. Tellus, 55, 345-363.   DOI
21 IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. Stocker, T. F. et al. Eds., Cambridge University Press, 1535 pp.
22 Ise, T., C. M. Litton, C. P. Giardina, and A. Ito, 2010: Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geophys. Res., 115, G040205, doi:10.1029/2010JG001326.   DOI
23 Ito, A., and T. Oikawa, 2000: A model analysis of the relationship between climate perturbations and carbon budget anomalies in global terrestrial ecosystems: 1970-1997. Climate Res., 15, 161-183, doi:10.3354/cr015161.   DOI
24 Kulawik, S., and Coauthors, 2016: Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmos. Meas. Tech., 9, 683-709, doi:10.5194/amt-9-683-2016.   DOI
25 Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954, doi:10.1038/nature09396.   DOI
26 Jung, M., and Coauthors, 2011: Global patterns of landatmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, doi:10.1029/2010JG001566.   DOI
27 Kato, T., and Y. H. Tang, 2008: Spatial variability and major controlling factors of $CO_2$ sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob. Change Biol., 14, 2333-2348.   DOI
28 Kim, J. S., J. S. Kug, J. H. Yoon, and S. J. Jeong, 2016: Increased atmospheric $CO_2$ growth rate during El Nino driven by reduced terrestrial productivity in the CMIP5 ESMs. J. Climate, 29, 8783-8805, doi:10.1175/JCLI-D-14-00672.1.   DOI
29 Kim, J., H. M. Kim, C.-H. Cho, K.-O. Boo, A. R. Jacobson, M. Sasakawa, T. Machida, M. Arshinov, and N. Fedoseev, 2017: Impact of Siberian observations on the optimization of surface $CO_2$ flux. Atmos. Chem. Phys., 17, 2881-2899, doi:10.5194/acp-17-2881-2017.   DOI
30 Krol, M., S. Houweling, B. Bregman, M. van den Broek, A. Segers, P. van Velthoven, W. Peters, F. Dentener, and P. Bergamaschi, 2005: The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys., 5, 417-432, doi:10.5194/acp-5-417-2005.   DOI
31 Law, B. E., and Coauthors, 2002: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. Forest Meteor., 113, 97-120.   DOI
32 Le Quere, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831-836.   DOI
33 Malhi, Y., 2002: Carbon in the atmosphere and terrestrial biosphere in the 21st century. Philos. Trans. Roy. Soc. London, 360, 2925-2945.   DOI
34 Masarie, K. A., W. Peters, A. R. Jacobson, and P. P. Tans, 2014: ObsPack: A framework for the preparation, delivery, and attribution of atmospheric greenhouse gas measurements. Earth Syst. Sci. Data, 6, 375-384, doi:10.5194/essd-6-375-2014.   DOI
35 P. P. Tans, and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA, 104, 18925-18930, doi:10.1073/pnas.0708986104.   DOI
36 Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563, doi:10.1126/science.1082750.   DOI
37 Niu, S., M. Wu, Y. Han, J. Xia, L. Li, and S. Wan, 2008: Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol., 177, 209-219.
38 Olson, J. S., J. A. Watts, and L. J. Allsion, 1985: Major world ecosystem complexes ranked by carbon in live vegetation. Numeric Data Package (NDP)-017, doi: 10.3334/CDIAC/lue.ndp017.
39 Patra, P. K., S. Maksyutov, and T. Nakazawa, 2005: Analysis of atmospheric $CO_2$ growth rates at Mauna Loa using $CO_2$ fluxes derived from an inverse model. Tellus, 57, 357-365, doi:10.3402/tellusb.v57i5. 16560.   DOI
40 Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol, D. Zupanski, L. Bruhwiler, and P. P. Tans, 2005: An ensemble data assimilation system to estimate $CO_2$ surface fluxes from atmospheric trace gas observations. J. Geophys. Res., 110, D24304, doi:10.1029/2005JD006157.   DOI
41 Piao, S., and Coauthors, 2008: Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52, doi:10.1038/nature06444.   DOI
42 Piao, S., P. Ciais, P. Friedlingstein, N. Noblet-Ducoudre, P. Cadule, N. Viovy, and T. Wang, 2009: Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical, 23, GB4026, doi: 10.1029/2008GB003339.
43 Wieder, W. R., C. C. Cleveland, and A. R. Townsend, 2009: Controls over leaf litter decomposition in wet tropical forests. Ecology, 90, 3333-3341.   DOI
44 Potter, C., S. Klooster, R. Myneni, V. Genovese, P.-N. Tan, and V. Kumer, 2003: Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling. Global Planet. Change, 39, 201-213.   DOI
45 Raupach, M. R., 2011: Carbon cycle: Pinning down the land carbon sink. Nat. Clim. Change, 1, 148-149.   DOI
46 Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon. Wea. Rev., 115, 1606-1626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.   DOI
47 Schneising, O., and Coauthors, 2012: Atmospheric greenhouse gases retrieved from SCIAMACHY: Comparison to ground-based FTS measurements and model results. Atmos. Chem. Phys., 12, 1527-1540, doi: 10.5194/acp-12-1527-2012.   DOI
48 Schneising, O., M. Reuter, M. Buchwitz, J. Heymann, H. Bovensmann, and J. P. Burrows, 2014: Terrestrial carbon sink observed from space: variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability. Atmos. Chem. Phys., 14, 133-141, doi:10.5194/acp-14-133-2014.   DOI
49 Xia, J., J. Chen, S. Piao, P. Ciais, Y. Luo, and S. Wan, 2014: Terrestrial carbon cycle affected by non-uniform climate warming. Nature, 7, 173-180, doi:10.1038/ngeo2093.   DOI
50 Yu, G. R., and Coauthors, 2013: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Change Biol., 19, 798-810, doi: 10.1111/gcb.12079.   DOI
51 Zeng, N., A. Mariotti, and P. Wetzel, 2005: Terrestrial mechanisms of interannual $CO_2$ variability. Global biogeochemical, 19, GB1016, doi:10.1029/2004GB002273.   DOI
52 Anderegg, W. R. L., and Coauthors, 2015: Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl. Acad. Sci. USA, 112, 15591-15596, doi:10.1073/pnas.1521479112.   DOI
53 Zeng, Z. C., and Coauthors, 2017: Global land mapping of satellite-observed $CO_2$ total columns using spatiotemporal geostatistics. Int. J. Digital Earth, 10, 426-456, doi:10.1080/17538947.2016.1156777.   DOI
54 Zhao, M., and S. W. Running, 2010: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943, doi:10.1126/science.1192666.   DOI
55 Anav, A., and Coauthors, 2013: Evaluating the land ocean components of the global carbon cycle in the CMIP5 earth system models. J. Climate, 26, 6801-6843, doi: 10.1175/JCLI-D-12-00417.1.   DOI