1 |
Asia-Pacific Network (APN) for Global Change Research, 2013: Climate Change Impact Assessment on the Asia-Pacific Water Resources Under AWCI/GEOSS retrieved from http://www.apn-gcr.org/resources/items/show/1576.
|
2 |
Bae, D.-H., K.-H. Son, and H.-A. Kim, 2013b: Derivation & evaluation of drought threshold level considering hydro-meteorological data on South Korea. Atmosphere, 46, 289-300 (in Korean with English abstract).
|
3 |
Bae, D.-H., J.-B. Ahn, H.-K. Kim, H.-A. Kim, K.-H. Son, S.-R. Cho, and U.-S. Jung, 2013a: Development & evaluation of real-time ensemble drought prediction. Atmosphere, 23, 113-121 (in Korean with English abstract).
DOI
|
4 |
Bowler, N., A. Arribas, S. Beare, K. E. Mylne, and G. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767-776.
DOI
|
5 |
Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530-543.
DOI
|
6 |
Hunke, E. C., and W. H. Lipscombe, 2008: CICE: the Los Alamos sea ice model documentation and software user's manual, Version 4.0.
|
7 |
Korea Meteorological Administration (KMA), 2011: Development of hydro-meteorological early warning system for response to climate change.
|
8 |
Korea Meteorological Administration (KMA), 2012: Construction of the abnormal climate probability forecast system using the joint seasonal forecast system between KAM and Met Office.
|
9 |
Lavers, D., L. Luo, and E. Wood, 2009: A multiple model assessment of seasonal climate forecast skill for applications. Geophys. Res. Lett., 36, L23711.
DOI
|
10 |
Li, H., L. Luo, E. F. Wood, and J. Schaake, 2009: The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting. J. Geophys. Res., 114, D04114, doi:10.1029/2008JD010969.
DOI
|
11 |
Liang, X., D. P. Lettenmainer, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14415-14428.
DOI
|
12 |
Sheffield, J., and E. F. Wood, 2008: Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432-458.
DOI
|
13 |
Liang, X., G. Jianzhong, and L. Ruby Leung, 2004: Asesment of the efects of spatial resolutions on daily water flux simulations. J. Hydrol., 298, 287-310.
DOI
|
14 |
Madec, G., 2008: NEMO ocean engine. Institut Piere-Simon Laplace (IPSL), France, 27.
|
15 |
Mason, I. B., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30. 291-303.
|
16 |
Shukla, S., and A. W. Wood, 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., doi:10.1029/2007GL032487.
DOI
ScienceOn
|
17 |
Singh, V., and Kluwer, 1996: Geographical information systems in hydrology. Kluwer Academic Publishers, 175-194.
|
18 |
So, J.-M., K.-H. Son, and D.-H. Bae, 2014: Estimation and assessment of bivariate joint drought index based on copula functions. J. Korea Water Resour. Assoc., KWRA, 47, 171-182.
DOI
|
19 |
Son, K.-H., 2015: Enhancement of hydrological drought outlook accuracy using Bayesian method and their real-time prediction applicability. Ph. D. dissertation, Dept. of Civil & Environmental Eng., Sejong Univ. Seoul.
|
20 |
Son, K.-H., J.-D. Lee, and D.-H. Bae, 2010: The application assessment of global hydrologic analysis models on South Korea. J. Korea Water Resour. Assoc., 43, 1063-1074.
DOI
ScienceOn
|
21 |
Son, K.-H., D.-H. Bae, and J.-S. Jung, 2011: Drought analysis and assessment by using land surface model on South Korea.. J. Korea Water Resour. Assoc., 44, 667-681.
DOI
ScienceOn
|
22 |
Wang, D., M. Hejazi, X. Cai, and A. J. Vaocchi, 2011: Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res., 47, W09527.
|
23 |
Son, K.-H., D.-H. Bae, and J.-H. Ahn, 2013: Projection and analysis of drought according to future climate and hydrological information in Korea. J. Korea Water Resour. Assoc., 47, 71-82.
|
24 |
Trenberth, K. E., 1984: Some effects of finite sample size and persistence on meteorological statistics. Part II: Potential predictability. Mon. Wea. Rev., 112, 2369-2379.
DOI
|
25 |
Valcke, S., 2011: OASIS3 user guide (prism 2-5), Tech. Rep. 3 Programme for integrated earth system modelling (PRISM) support initiative.
|
26 |
Wilks, D. S., 1995: Forecast verification. Statistical Methods in the Atmospheric Sciences. Academic Press.
|
27 |
Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press.
|
28 |
Wood, A. W., and D. P. Lettenmaier, 2008: An ensemble approach for attribution of hydrologic prediction uncertainty. J. Geophys. Res., 35, L14401, doi:1029/2008GL034648.
|
29 |
Yoon, K. H., K. MO, and E. F. Wood, 2012: Dynamicmodel-based seasonal prediction of meteorological drought over the contiguous United States. J. Hydrometeor., 13, 463-482.
DOI
|
30 |
Yuan, X., E. F. Wood, L. Luo, and M. Pan, 2011: A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. J. Geophys. Res., 38, L13402, doi:10.1029/2011GL047792.
DOI
|
31 |
Yuan, X., E. F. Wood, N. W. Chaney, J. Sheffield, J. Kam, M. Liang, and K. Guan, 2013: Probabilistic seasonal forecasting of African drought by dynamical models. J. Hydrometeor., 14, 1706-1720.
DOI
|