Browse > Article
http://dx.doi.org/10.14191/Atmos.2011.21.1.057

Characteristics of the Lidar Ratio Determined from Lidar and Sky Radiometer Measurements in Seoul  

Kim, M.H. (School of Earth and Environmental Sciences, Seoul National University)
Kim, S.W. (School of Earth and Environmental Sciences, Seoul National University)
Yoon, S.C. (School of Earth and Environmental Sciences, Seoul National University)
Sugimoto, Nobuo (Atmospheric Environment Division, National Institute for Environmental Studies)
Sohn, B.J. (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Atmosphere / v.21, no.1, 2011 , pp. 57-67 More about this Journal
Abstract
Aerosol lidar ratio (extinction-to-backscatter ratio) at 532 nm was determined using 4-year measurements of elastic-backscatter lidar and sky radiometer at Seoul National University of Seoul, Korea. The mean lidar ratio (with standard deviation) based on 4 years of measurements is found to be $61.7{\pm}16.5$ sr, and weak seasonal variations are noted with a maximum in JJA ($68.1{\pm}16.8$ sr) and a minimum in DJF ($57.2{\pm}17.9$ sr). The lidar ratios for clean, dust, and polluted conditions are estimated to be $45.0{\pm}9.5$ sr, $51.7{\pm}13.7$ sr, and $62.2{\pm}13.2$ sr, respectively. While the lidar ratio for the polluted condition is appears to be consistent with previous studies, clean and dust conditions tend to have larger ratios, compared to previous estimates. This discrepancy is thought to be mainly due to the anthropogenic aerosols existing throughout the year around Seoul, which may cause increased lidar ratios even for clean and dust conditions.
Keywords
Lidar ratio; Aerosol; Lidar; Sky radiometer; Dust; Pollution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 이시혜, 김영성, 김상우, 윤순창, 2008: 서울과 고산의 에어러솔 화학성분과 광학특성의 계절변화, 한국대기환경학회지, 24(4), 470-482.
2 Anderson, T. L., S. J. Masonis, D. S. Covert, and R. J. Charlson, 2000: In situ measurements of the aerosol extinctiontobackscatter ratio at a polluted continental site. Journal of Geophysical Research, 105, 26907-26915.   DOI
3 Ansmann, A., F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, 2001: European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast, Journal of Geophysical Research, 106, 20725-20733, doi:10.1029/ 2000JD000091.   DOI
4 Cattrall, C., J. Reagan, K. Thome, and O. Dubovik, 2005: Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations, Journal of Geophysical Research, 110, D10S11, doi:10.1029/ 2004JD005124.   DOI
5 Chazette, P., H. Randriamiarisoa, J. Sanak, P. Couvert, and C. Flamant, 2005: Optical properties of urban aerosol from airborne and ground-based in situ measurements performed during the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program, Journal of Geophysical Research, 110, D02206, doi:10.1029/ 2004JD004810.
6 Doherty, Sarah J., Theodore L. Anderson, and Robert J. Charlson, 1999: Measurement of the Lidar Ratio for Atmospheric Aerosols with a $180^{\circ}$ Backscatter Nephelometer, Applied Optics, 38, 1823-1832.   DOI
7 Dubovik, O., A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, van der Zander, M Sorokin, and I. Slut-sker, 2006: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, Journal of Geophysical Research, 111, D11208, doi:10.1029/2005JD006619.   DOI
8 Fernald, F. G., 1984: Analysis of atmospheric lidar observations: some comments. Applied Optics, 23, 652-653.   DOI   ScienceOn
9 Franke, K., A. Ansmann, D. Mu¨ ller, D. Althausen, A. Wagner, and R. Scheele, 2001: One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar. Geophysical Research Letters, 28, 4559-4562.   DOI   ScienceOn
10 He, Q. S., Li, C. C., Mao, J. T., Lau, A. K. H., and Li, P. R., 2006: A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong, Atmospheric Chemistry and Physics, 6, 3243-3256, doi:10.5194/acp-6-3243-2006.   DOI
11 Jeong, Myeong-jae and Zhanqing Li, 2005: Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer, Journal of Geophysical Research, 110, D10S08, doi:10.1029/2004JD004647.
12 Jung, J.,, Y. J. Kim, K. Y. Lee, M. G.-Cayetano, T. Batmunkh, J.-H. Koo, and J. Kim, 2010: Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008, Atmospheric Chemistry and Physics, 10, 5391-5408, doi:10.5194/acp-10-5391-2010.   DOI
13 Kaufman, Y. J., J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, 2003: Remote sensing of vertical distributions of smoke aerosol off the coast of Africa, Geophysical Research Letters, 30(16), 1831, doi:10.1029/2003GL017068.
14 Kim, S.-W., S.-C. Yoon, J. Kim, and S.-Y. Kim, 2007: Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multiyear MODIS, LIDAR and AERONET Sun/sky radiometer measurements, Atmospheric Environment, 41, 1634-1651.   DOI   ScienceOn
15 Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns, Applied Optics, 20(2), 211-220.   DOI   ScienceOn
16 Leon, J.-F., D. Tanré, J. Pelon, Y. J. Kaufman, J. M. Haywood, and B. Chatenet, 2003: Profiling of a Saharan dust outbreak based on a synergy between active and passive remote sensing, Journal of Geophysical Research, 108(D18), 8575, doi:10.1029/2002JD002774.   DOI
17 Liu, Z., N. Sugimoto, and T. Murayama, 2002: Extinction- To-Backscatter Ratio of Asian Dust Observed With High-Spectral-Resolution Lidar and Raman Lidar, Applied Optics, 41, 2760-2767.   DOI
18 McPherson, C. J., J. A. Reagan, J. Schafer, D. Giles, R. Ferrare, J. Hair, and C. Hostetler, 2010: AERONET, airborne HSRL, and CALIPSO aerosol retrievals compared and combined: A case study, Journal of Geophysical Research, 115, D00H21, doi:10.1029/ 2009JD012389.
19 Murayama, T., S. Masonis, J. Redemann, T. L. Anderson, B. Schmid, J. M. Livingston, P. B. Russell, B. Huebert, S. G. Howell, C. S. McNaughton, A. Clarke, M. Abo, A. Shimizu, N. Sugimoto, M. Yabuki, H. Kuze, S. Fukagawa, K. Maxwell-Meier, R. J. Weber, D. A. Orsini, B. Blomquist, A. Bandy, and D. Thornton, 2003: An intercomparison of lidar-derived aerosol optical properties with airborne measurements near Tokyo during ACE-Asia, Journal of Geophysical Research, 108(D23), 8651, doi:10.1029/2002JD003259.   DOI
20 Mishchenko, M. I., 1993: Light-scattering by size shape distributions of randomly oriented axially-symmetrical particles of a size comparable to a wavelength, Applied Optics, 32(24), 4652-4666.   DOI
21 Nakajima, T., G. Tonna, R. Rao, R. Boi, Y. Kaufman, and B. Holben, 1996: Use of sky brightness measurements from ground for remote sensing of particulate polydispersions, Applied Optics, 35, 2672-2686.   DOI
22 Noh, Y. M., Y. J. Kim, B. C. Choi, and T. Murayama, 2007: Aerosol lidar ratio characteristics measured by a multiwavelength Raman lidar system at Anmyeon Island, Korea. Atmospheric Research, 86, 76-87, doi:10.1016/j.atmosres.2007.03.006.   DOI   ScienceOn
23 Sasano, Y., E. V. Browell, and S. Ismail, 1985: Error caused by using a constant extinction/backscattering ratio in the lidar solution, Applied Optics, 24, 3929-3932.   DOI   ScienceOn
24 Tesche, M., A. Ansmann, D. Müller, D. Althausen, R. Engelmann, M. Hu, and Y. Zhang, 2007: Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China, Applied Optics, 46, 6302-6308.   DOI
25 Voss, K. J., E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, and H. R. Gordon, 2001: Lidar measurements during Aerosols99, Journal of Geophysical Research, 106, 20,821-20,831, doi:10.1029/2001JD900217.   DOI
26 Welton, E. J., Voss, K. J., Gordon, H. R., Maring, H., Smirnov, A., Holben, B., Schmid, B., Livingston, J. M., Russell, P. B., Durkee, P. A., Formenti, P. and Andreae, M. O., 2000: Ground-based lidar measurements of aerosols during ACE-2: instrument description, results, and comparisons with other ground-based and airborne measurements. Tellus B, 52: 636-651. doi: 10.1034/ j.1600-0889.2000.00025.   DOI   ScienceOn
27 Yoon, S.-C., S.-W. Kim, M.-H. Kim, A. Shimizu, N. Sugimoto, 2008: Ground-Based Mie-Scattering Lidar Measurements of Aerosol Extinction Profiles during ABC-EAREX 2005: Comparison of Instruments and Inversion Algorithm. Journal of the Meteorological Society of Japan, 86, 377-396.
28 Winker, D. M., J. Pelon, J. A. Coakley, Jr., S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. Hoff, C. Kittaka, T. L. Kubar, H. LeTreut, M. P. McCormick, G. Megie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, B. A. Wielicki, 2009: The CALIPSO Mission: A Global 3D View Of Aerosols And Clouds, Bulletin of the American Meteorological Society., 91, 1211-1229, doi: 10.1175/2010BAMS3009.1.