Browse > Article
http://dx.doi.org/10.32431/kace.2019.22.3.004

SEM-CT: Comparison of Problem Solving Processes in Science(S), Engineering(E), Mathematic(M), and Computational Thinking(CT)  

Nam, Younkyeong (부산대학교 지구과학교육과)
Yoon, JinA (부산대학교 과학교육연구소)
Han, KeumJoo (부산대학교 수학교육과)
Jeong, JuHun (부산대학교 소프트웨어교육센터)
Publication Information
The Journal of Korean Association of Computer Education / v.22, no.3, 2019 , pp. 37-54 More about this Journal
Abstract
The main purpose of STEM education is to understand methods of inquiry in each discipline to develop convergent problem solving skills. To do this, we must first understand the problem-solving process that is regarded as an essential component of each discipline. The purposes of this study is to understand the relationship between the problem solving in science (S), engineering (E), mathematics (M), and computational thinking (CT) based on the comparative analysis of problem solving processes in each SEM discipline. To do so, first, the problem solving process of each SEM and CT discipline is compared and analyzed, and their commonalities and differences are described. Next, we divided the CT into the instrumental and thinking skill aspects and describe how CT's problem solving process differs from SEM's. Finally we suggest a model to explain the relationship between SEM and CT problem solving process. This study shows how SEM and CT can be converged as a problem solving process.
Keywords
Integrated Science Education; Computational Thinking; Problem Solving Process; STEM Education;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 ATC21S (2012). Defining twenty-first century skills. Retrieved December 1, 2014, from http://www.atc21s.org
2 ISTE & CSTA (2011). Operational definition of computational thinking for K-12 education.
3 Burgett, T., Folk, R., Fulton, J., Peel, A., Pontelli, E., & Szczepanski, V. (2015). DISSECT: Analysis of pedagogical techniques to integrate computational thinking into K-12 curricula. In Frontiers in Education Conference (FIE), 2015. 32614 2015. IEEE (pp. 1-9). IEEE.
4 Henderson, P. B. (2009) Ubiquitous computational thinking, Computer, (2009 October), 100-102.
5 유중현.김종혜 (2008). 문제 해결과정에서의 정보과학적 사고 능력에 대한 개념적 고찰. 정보창의교육논문지, 2(2), 15-24.
6 박성빈.안성진 (2016). 컴퓨팅 사고력의 역량 탐색 연구 : 소프트웨어개발자를 중심으로. 컴퓨터교육학회논문지, 19(5), 41-53.   DOI
7 Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community?. Acm Inroads, 2 (1), 48-54.   DOI
8 Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical Computing, 1 (2), 67-69.
9 Selby, C., Dorling, M., & Woollard, J. (2014). Evidence of assessing computational thinking. Brookes e Journal of Learning and Teaching, 1-12.
10 Partnership for 21st Century Skills(P21). (2009). P21 framework definitions. Retrieved December 1, 2014, from http://www.p21.org
11 Deek, F. P., Hiltz, S. R., Kimmel, H. & Router, N. (1999). Cognitive Assessment of Students' Problem Solving and Program Development Skills. Journal of Engineering Education, 88 (3), 317-326.   DOI
12 Guilford, J. P. (1967). Creativity: Yesterday, today and tomorrow. The Journal of Creative Behavior, 1 (1), 3-14.   DOI
13 Lunetta, V., Hofstein, A., & Clough, M. (2007). Learning and teaching in the school science laboratory: An analysis of research, theory, and practice. Handbook of Research on Science Education, 2.
14 So, W. W. M., Zhan, Y., Chow, S. C. F., & Leung, C. F. (2017). Analysis of STEM activities in primary students' science projects in an informal learning environment. International Journal of Science and Mathematics Education, 1-12
15 Chin, C., & Brown, D. (2002). Student-generated questions: A meaningful aspect of learning in science. International Journal of Science Education, 24(5), 521-549.   DOI
16 교육부 (2015a). 과학과 교육과정. 교육부 고시 제2015-74호 [별책9]. 서울 : 교육부.
17 National Research Council(NRC). (2010). Standards for K-12 engineering education?. National Academies Press.
18 Schwab, J. (1966). The teaching of science as inquiry. Cambridge, MA: Harvard University Press.
19 김영민.서혜애.박종석 (2013). 잘 알려진 창의적 과학자들의 과학적 문제 발견 패턴 분석. 한국과학교육학회지, 33(7), 1285-1299.   DOI
20 Hoover, S. & Feldhusen, J. (1990). The scientific hypothesis formulation th-grade students. Journal of Educational Psychology, 82(4), 838-848.   DOI
21 한효순.최병순.강순민.박종윤 (2002). '생각하는 과학'프로그램의 변인활동이 초등학생의 변인통제 능력에 미치는 효과. 한국과학교육학회지, 22(3), 571-585.
22 전윤식.김정섭.윤경미 (2003). 창의성 교육의 새로운 접근 : 문제 찾기. 교육학연구, 41(3), 215-238.
23 조희형.김희경.윤희숙.이기영 (2009). 과학 교육의 이론과 실제. 서울: 교육과학사.
24 조현국 (2018). 2015 개정 교육과정에서 나타나는 과학적 탐구 요소 분석 : 과학탐구실험을 중심으로. 교과교육학연구, 22(3), 208-218.   DOI
25 Dewey, J. (1938). Democracy and education. New York: Macmillan.
26 Heller, K. A. (2007). Scientific ability and creativity. High Ability Studies, 18 (2), 209-234.   DOI
27 박종원 (2004). 과학적 창의성 모델의 제안 : 인지적 측면을 중심으로. 한국과학교육학회지, 24(2), 375-386.
28 Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24 (1), 1-10.   DOI
29 Sternberg R.J., & Lubart, T. (1993). Creative giftedness: A multivariante investment ap-proach. Gifted Child Quarterly, 37 (1), 7-15.   DOI
30 하주현 (2003). 문제발견, 창의적 사고, 창의적 인성의 관계. 교육심리연구, 17(3), 99-115.
31 김영채 (1997). 창의적 문제 해결 : 창의력의 이론, 개발과 수업. 서울: 교육과학사
32 Carson, D. K., & Runco, M. A. (1999). Creative problem solving and problem finding in young adults: Interconnections with stress, hassles, and coping abilities. The Journal of Creative Behavior, 33 (3), 167-188.   DOI
33 박미진 (2016). 과학개념 융합을 통한 문제발견 및 문제해결 과정에서 나타나는 과학영재의 창의적 사고의 특성. 박사학위논문, 부산대학교.
34 한병래 (2013). 초등정보교육에서의 계산적사고 교육을 위한 언플러그드 컴퓨팅 방법에 관한 고찰. 정보교육학회논문지, 17(2), 147-156.
35 Harms, H. R., & Janosz, D. A. (2012). Pre-engineering. McGraw Hill Education.
36 황혜정.나귀수.최승현.박경미.임재훈.서동엽 (2016). 수학교육학신론. 서울: 문음사.
37 NCTM(1991). Mathematical modeling in the secondary school curriculum, In Frank Swetz and J. S. Hartzler(Eds.). Reston, VA: The National Council of Teachers of Mathematics.
38 이동영.남윤경 (2018) 공학설계 측면에서 한국 STEAM 프로그램 분석틀 제안. 대한지구과학교육학회지, 11(1), 63-77.   DOI
39 NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press.
40 Nam, Y., Lee, S. J., & Paik, S. H. (2016). The impact of engineering integrated science (EIS) curricula on first-year technical high school students' attitudes toward science and perceptions of engineering. Eurasia Journal of Mathematics, Science & Technology Education, 12 (7), 1881-1907.
41 Hjalmarson, M., & Lesh, R. (2008). Engineering and design research: Intersections for education research and design. In Handbook of design research methods in education: Innovations in science, technology, engineering, and mathematics learning and teaching. (pp. 114-128). Routledge.
42 문대영 (2008). STEM 통합 접근의 사전 공학 교육 프로그램 모형 개발. 공학교육연구, 11(2), 90-101.   DOI
43 김성준 (2002). 학교 대수 도입과 관련된 논의. 학교수학, 4(1), 29-47
44 이영준.백성혜.신재홍.유헌창.정인기.안상진.최정원.전성균 (2014). 초중등 단계 Computational Thinking 도입을 위한 기초 연구[BD14060010]. 한국과학창의재단.
45 Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Smith, K. A., Stohlmann. M. S. (2014). A framework for quality K-12 engineering education: Research and development. Journal of Pre-College Engineering Education Research, (J-PEER), 4 (1), 1-13.
46 교육부 (2015b). 수학과 교육과정. 교육부 고시 제2015-74호 [별책 8]. 서울 : 교육부.
47 Polya, G. (1971). How to solve it: a new aspect of mathematical method (2nd ed.). Princeton, N.J. : Princeton University Press, c1957.
48 Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press
49 Burton, D. (1985). The History of mathematics : An introduction. Boston: Allyn and Bacon.
50 Mayer, R. E. (1999). Multimedia aids to problem-solving transfer. International Journal of Educational Research, 31 (7), 611-623.   DOI
51 Rodriguez, B., Rader, C. & Camp, T. (2016). Using student performance to assess CS unplugged activities in a classroom environment. In proceedings of the 2016 ACM conference on innovation and technology in computer science education (pp. 95-100). ACM.
52 National Research Council (NRC). (2000). Inquiry in the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.
53 Taub, R., Armoni, M. and Ben-Ari, M., (2012). CS unplugged and middle-school students' views, attitudes, and intentions regarding CS. ACM Transactions on Computing Education (TOCE), 12(2), No 8.
54 Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., &Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25 (1), 127-147.   DOI
55 최숙영 (2016). 문제해결의 관점에서 컴퓨팅 사고력 증진을 위한 교수학습에 대한 연구. 컴퓨터교육학회논문지, 19(1), 53-62.   DOI
56 Wing, J. (2006). Computational thinking. Communications of the ACM, 49 (3), 33-35.   DOI
57 Wing, J. (2008). Computational thinking and thinking about computing. Philosophical transactions of the royal society of London A: mathematical, physical and engineering sciences, 366 (1881), 3717-3725.   DOI
58 Lockwood, J., & Mooney, A. (2017). Computational thinking in education: Where does it fit? A systematic literary review. arXiv preprint arXiv:1703.07659. Retrieved from: https://pdfs.semanticscholar.org/856e/ed bf3ad4902e86ba94ab8dd124e6a1495889.pdf
59 정웅열.이영준 (2018). SW.수학.과학 융합형 교수.학습 자료에 나타난 교육과정 성취기준 내용 분석. 컴퓨터교육학회논문지, 21(5), 11-23.   DOI
60 Chinn, C., & Malhotra, B. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86 (2), 175-218.   DOI
61 Bybee, R., Carlson-Powell, J., & Trowbridge, L. (2008). Teaching secondary school science: Strategies for developing scientific literacy. Columbus: Pearson/Merrill/Prentice Hall.
62 Wang, L., Zhang, R., Clarke, D., & Wang, W. (2014). Enactment of scientific inquiry: Observation of two cases at different grade levels in China Mainland. Journal of Science Education and Technology, 23 (2), 280-297.   DOI