Browse > Article
http://dx.doi.org/10.4333/KPS.2011.41.3.125

Solid Dispersions as a Drug Delivery System  

Kim, Ki-Taek (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Lee, Jae-Young (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Lee, Mee-Yeon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Song, Chung-Kil (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Choi, Joon-Ho (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Kim, Dae-Duk (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Publication Information
Journal of Pharmaceutical Investigation / v.41, no.3, 2011 , pp. 125-142 More about this Journal
Abstract
Solid dispersion, defined as the dispersion of one or more active ingredient in a carrier or matrix at solid state, is an efficient strategy for improving dissolution of poorly water-soluble drugs for enhancement of their bioavailability. Compared to other conventional formulations such as tablets or capsules, solid dispersion which can be prepared by various methods has many advantages. However, despite numerous studies which have been carried out, limitations for commercializing these products remain to be solved. For example, during the manufacturing process or storage, amorphous form of solid dispersion can be converted into crystalline form. That is, the dissolution rate of solid dispersion would continuously decrease during storage, resulting in a product of no value. To resolve these problems, studies have been conducted on the effects of excipients. In fact, modification of the solid dispersions to overcome these disadvantages has progressed from the first generation to the recent third generation products. In this review, an overview on solid dispersions in general will be given with emphasis on the various manufacturing processes which include the use of polymers and on the stabilization strategies which include methods to prevent crystallization.
Keywords
Solid dispersion; Polymeric carrier; Bioavailability; Crystallization; Stabilization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gines, J.M., Arias, M.J., Moyano, J.R., Sanchezsoto, P.J., 1996. Thermal investigation of crystallization of polyethylene glycols in solid dispersions containing oxazepam. Int. J. Pharm. 143, 247-253.   DOI
2 Goldberg, A.H., Gibaldi, M., Kanig, J.L., 1965. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. I. Theoretical considerations and discussion of the literature. J. Pharm. Sci. 54, 1145-1148.   DOI
3 Damian, F., Blaton, N., Naesens, L., Balzarini, J., Kinget, R., Augustijns, P., Van den Mooter, G., 2000. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur. J. Pharm. Sci. 10, 311-322.   DOI
4 Desai, J., Alexander, K., Riga, A., 2006. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int. J. Pharm. 308, 115-123.   DOI
5 Dhirendra, K., Lewis, S., Udupa, N., Atin, K., 2009. Solid dispersions: a review. Pak. J. Pharm. Sci. 22, 234-246.
6 Doherty, C., York, P., 1989. The in-vitro pH-dissolution dependence and in-vivo bioavailability of frusemide-PVP solid dispersions. J. Pharm. Pharmacol. 41, 73-78.   DOI
7 Dubois, J.L., Ford, J.L., 1985. Similarities in the release rates of different drugs from polyethylene glycol 6000 solid dispersions. J. Pharm. Pharmacol. 37, 494-495.   DOI
8 El-Zein, H., Riad, L., Elbary, A.A., 1998. Enhancement of carbamazepine dissolution - in vitro and in vivo evaluation. Int. J. Pharm. 168, 209-220.   DOI
9 Fawaz, F., Bonini, F., Guyot, M., Bildet, J., Maury, M., Lagueny, A.M., 1996. Bioavailability of norfloxacin from PEG 6000 solid dispersion and cyclodextrin inclusion complexes in rabbits. Int. J. Pharm. 132, 271-275.   DOI
10 Zingone, G., Rubessa, F., 1994. Release of carbamazepine from solid dispersions with polyvinylpyrrolidone/vinylacetate copolymer (PVP/VA). S.T.P. Pharm. Sci. 4, 122-127.   DOI
11 Fernandez, M., Margarit, M.V., Rodriguez, I.C., Cerezo, A., 1993. Dissolution kinetics of piroxicam in solid dispersions with polyethylene glycol-4000. Int. J. Pharm. 98, 29-35.   DOI
12 Ford, J.L., A.F., S., Dubois, J.L., 1986. The properties of solid dispersions of indomethacin or phenylbutazone in polyethylene glycol. Int. J. Pharm. 28, 11-22.   DOI
13 Ford, J.L., and Rubinstein, M.H., 1980. Formulation and Aging of Tablets Prepared from Indomethacin-Polyethylene Glycol 6000 Solid Dispersions. Pharmaceutica Acta. Helvetiae. 55, 1-7.
14 Chiou, W.L., Riegelma.S, 1970. Oral Absorption of Griseofulvin in Dogs - Increased Absorption Via Solid Dispersion in Polyethylene Glycol-6000. J. Pharm. Sci. 59, 937-942.   DOI
15 Chiou, W.L., Riegelman, S., 1969. Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J. Pharm. Sci. 58, 1505-1510.   DOI
16 Chiou, W.L., Riegelman, S., 1971. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 60, 1281-1302.   DOI
17 Cho, S.W., Lee, J.S., Choi, S.H., 2004. Enhanced oral bioavailability of poorly absorbed drugs. I. Screening of absorption carrier for the ceftriaxone complex. Journal of Pharmaceutical Sciences. 93, 612-620.   DOI
18 Chokshi, R.J., Shah, N.H., Sandhu, H.K., Malick, A.W., Zia, H., 2008. Stabilization of low glass transition temperature indomethacin formulations: impact of polymer-type and its concentration. J. Pharm. Sci. 97, 2286-2298.   DOI
19 Chutimaworapan, S., Ritthidej, G.C., Yonemochi, E., Oguchi, T., Yamamoto, K., 2000. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Development and Industrial Pharmacy. 26, 1141-1150.   DOI
20 Vippagunta, S.R., Maul, K.A., Tallavajhala, S., Grant, D.J., 2002. Solid-state characterization of nifedipine solid dispersions. Int. J. Pharm. 236, 111-123.   DOI   ScienceOn
21 Vippagunta, S.R., Wang, Z., Hornung, S., Krill, S.L., 2007. Factors affecting the formation of eutectic solid dispersions and their dissolution behavior. J. Pharm. Sci. 96, 294-304.   DOI
22 Walking, W.D., 1994. Povidone. Handbook of Pharmaceutical Excipients.   DOI   ScienceOn
23 Watanabe, T., Ohno, I., Wakiyama, N., Kusai, A., Senna, M., 2002. Stabilization of amorphous indomethacin by co-grinding in a ternary mixture. Int. J. Pharm. 241, 103-111.   DOI
24 Weuts, I., Kempen, D., Verreck, G., Decorte, A., Heymans, K., Peeters, J., Brewster, M., Van den Mooter, G., 2005. Study of the physicochemical properties and stability of solid dispersions of loperamide and PEG6000 prepared by spray drying. Eur. J. Pharm. Biopharm. 59, 119-126.   DOI
25 Won, D.H., Kim, M.S., Lee, S., Park, J.S., Hwang, S.J., 2005. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 301, 199-208.   DOI
26 Yagi, N., Terashima, Y., Kenmotsu, H., Sekikawa, H., Takada, M., 1996. Dissolution behavior of probucol from solid dispersin systems of probucol-polyvinylpyrrolidone. Chem. Pharm. Bull. 44, 241-244.   DOI
27 Bergh, M., Magnusson, K., Nilsson, J.L. Karlberg, A.T., 1998a. Formation of formaldehyde and peroxides by air oxidation of high purity polyoxyethylene surfactants. Contact Dermatitis. 39, 14-20.   DOI
28 Corrigan, O.I., Healy, A.M., 2002. Surface active carriers in pharmaceutical products and system. Encyclopedia of pharmaceutical technology. 3, 2639-2653.
29 Corrigan, O.I., Timoney, R.F., Whelan, M.J., 1976. The influence of polyvinylpyrrolidone on the solution and bioavailability of hydrochlorothiazide. J. Pharm. Pharmacol. 28, 703-706.   DOI
30 Damian, F., Blaton, N., Kinget, R., Van den Mooter, G., 2002. Physical stability of solid dispersions of the antiviral agent UC-781 with PEG 6000, Gelucire 44/14 and PVP K30. Int. J. Pharm. 244, 87-98.   DOI
31 Bergh, M., Shao, L.P., Hagelthorn, G., Gafvert, E., Nilsson, J.L.G., Karlberg, A.T., 1998b. Contact allergens from surfactants. Atmospheric oxidation of polyoxyethylene alcohols, formation of ethoxylated aldehydes, and their allergenic activity. J. Pharm. Sci. 87, 276-282.   DOI
32 Bikiaris, D., 2005. Physicochemical studies on solid dispersions of poorly water-soluble drugs: Evaluation of capabilities and limitations of thermal analysis techniques. Thermochim. Acta. 439, 58-67.   DOI   ScienceOn
33 Bindra, D.S., Williams, T.D., Stella, V.J., 1994. Degradation of O-6-Benzylguanine in Aqueous Polyethylene-Glycol-400 (Peg-400) Solutions - Concerns with Formaldehyde in Peg-400. Pharm. Res. 11, 1060-1064.   DOI
34 Breitenbach, J., 2002. Melt extrusion: from process to drug delivery technology. European Journal of Pharmaceutics and Biopharmaceutics. 54, 107-117.   DOI
35 van Drooge, D.J., Braeckmans, K., Hinrichs, W.L.J., Remaut, K., De Smedt, S.C., Frijlink, H.W., 2006a. Characterization of the mode of incorporation of lipophilic compounds in solid dispersions at the nanoscale using fluorescence resonance energy transfer (FRET). Macromol Rapid Comm. 27, 1149-1155.   DOI
36 Yao, W.W., Bai, T.C., Sun, J.P., Zhu, C.W., Hu, J., Zhang, H.L., 2005. Thermodynamic properties for the system of silybin and poly(ethylene glycol) 6000. Thermochim. Acta. 437, 17-20.   DOI
37 Yoshihashi, Y., Iijima, H., Yonemochi, E., Terada, K., 2006. Estimation of physical stability of amorphous solid dispersion using differential scanning calorimetry. J. Therm. Anal Calorim. 85, 689-692.   DOI
38 Van den Mooter, G., Wuyts, M., Blaton, N., Busson, R., Grobet, P., Augustijns, P., Kinget, R., 2001. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 12, 261-269.   DOI
39 van Drooge, D.J., Hinrichs, W.L., Visser, M.R., Frijlink, H.W., 2006b. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int. J. Pharm. 310, 220-229.   DOI
40 Vasconcelos, T., Sarmento, B., Costa, P., 2007. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today. 12, 1068-1075.   DOI
41 Verreck, G., Chun, I., Peeters, J., Rosenblatt, J., Brewster, M.E., 2003a. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm. Res. 20, 810-817.   DOI
42 Chiou, W.L., 1977. Pharmaceutical applications of solid dispersion systems: X-ray diffraction and aqueous solubility studies on griseofulvin-polyethylene glycol 6000 systems. J. Pharm. Sci. 66, 989-991.   DOI
43 Ceballos, A., Cirri, M., Maestrelli, F., Corti, G., Mura, P., 2005. Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Farmaco. 60, 913-918.   DOI
44 Chaudhari.P.D., S.P.K., 2006. Current trends in solid dispersions techniques. Pharmaceutical Reviews. 4.
45 Chauhan, B., Shimpi, S., Paradkar, A., 2005. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur. J. Pharm. Sci. 26, 219-230.   DOI   ScienceOn
46 Tashtoush, B.M., Al-Qashi, Z.S., Najib, N.M., 2004. In vitro and in vivo evaluation of glibenclamide in solid dispersion systems. Drug Development and Industrial Pharmacy. 30, 601-607.   DOI
47 Verreck, G., Decorte, A., Heymans, K., Adriaensen, J., Liu, D., Tomasko, D., Arien, A., Peeters, J., Van den Mooter, G., Brewster, M.E., 2006a. Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int. J. Pharm. 327, 45-50.   DOI
48 Verreck, G., Six, K., Van den Mooter, G., Baert, L., Peeters, J., Brewster, M.E., 2003b. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion--Part I. Int. J. Pharm. 251, 165-174.   DOI
49 Vilhelmsen, T., Eliasen, H., Schaefer, T., 2005. Effect of a melt agglomeration process on agglomerates containing solid dispersions. Int. J. Pharm. 303, 132-142.   DOI   ScienceOn
50 Taylor, L.S., Zografi, G., 1997. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14, 1691-1698.   DOI
51 Timko, R.J., Lordi, N.G., 1984. Thermal-Analysis Studies of Glass Dispersion-Systems. Drug Development and Industrial Pharmacy. 10, 425-451.   DOI
52 Torrado, S., Torrado, J.J., Cadorniga, R., 1996. Preparation, dissolution and characterization of albendazole solid dispersions. Int. J. Pharm. 140, 247-250.   DOI
53 Trapani, G., Franco, M., Latrofa, A., Pantaleo, M.R., Provenzano, M.R., Sanna, E., Maciocco, E., Liso, S., 1999. Physicochemical characterization and in vivo properties of Zolpidem in solid dispersions with polyethylene glycol 4000 and 6000. Int. J. Pharm. 184, 121-130.   DOI
54 Van den Mooter, G., Weuts, I., De Ridder, T., Blaton, N., 2006. Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int. J. Pharm. 316, 1-6.   DOI   ScienceOn
55 Ali, A.A., Gorashi, A.S., 1984. Absorption and dissolution of nitrofurantoin from different experimental formulations. Int. J. Pharm. 19, 297-306.   DOI
56 Andronis, V., Yoshioka, M., Zografi, G., 1997. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J. Pharm. Sci. 86, 346-351.   DOI
57 Turk, M., Helfgen, B., Hils, P., Lietzow, R., Schaber, K., 2002. Micronization of pharmaceutical substances by rapid expansion of supercritical solutions (RESS): Experiments and modeling. Particle & Particle Systems Characterization. 19, 327-335.   DOI
58 Urbanetz, N.A., 2006. Stabilization of solid dispersions of nimodipine and polyethylene glycol 2000. Eur. J. Pharm. Sci. 28, 67-76.   DOI
59 Valizadeh, H., Nokhodchi, A., Qarakhani, N., Zakeri-Milani, P., Azarmi, S., Hassanzadeh, D., Lobenberg, R., 2004. Physicochemical characterization of solid dispersions of indomethacin with PEG 6000, Myrj 52, lactose, sorbitol, dextrin, and Eudragit E100. Drug Dev. Ind. Pharm. 30, 303-317.   DOI
60 Stoll, R.G., Bates, T.R., Nieforth, K.A., Swarbrick, J., 1969. Some physical factors affecting the enhanced blepharoptotic activity of orally administered reserpine-cholanic acid coprecipitates. J. Pharm. Sci. 58, 1457-1459.   DOI
61 Streubel, A., 2006. Drug delivery to the upper small intestine window using gastroretentive technologies. Curr. Opin. Pharmacol. 6, 501-508.   DOI   ScienceOn
62 Subramaniam, B., Rajewski, R.A., Snavely, K., 1997. Pharmaceutical processing with supercritical carbon dioxide. Journal of Pharmaceutical Sciences. 86, 885-890.   DOI
63 Suzuki, H., Miyamoto, N., Masada, T., Hayakawa, E., Ito, K., 1996. Solid dispersions of benidipine hydrochloride. 1. Preparations using different solvent systems and dissolution properties. Chem. Pharm. Bull 44, 364-371.   DOI
64 Tanaka, N., Imai, K., Okimoto, K., Ueda, S., Tokunaga, Y., Ohike, A., Ibuki, R., Higaki, K., Kimura, T., 2005. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine. J. Control Release. 108, 386-395.   DOI
65 Suzuki, H., Sunada, H., 1997. Comparison of nicotinamide, ethylurea and polyethylene glycol as carriers for nifedipine solid dispersion systems. Chem. Pharm. Bull. (Tokyo) 45, 1688-1693.   DOI   ScienceOn
66 Suzuki, H., Sunada, H., 1998. Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Chem. Pharm. Bull. (Tokyo) 46, 482-487.   DOI   ScienceOn
67 Tanaka, N., Imai, K., Okimoto, K., Ueda, S., Tokunaga, Y., Ibuki, R., Higaki, K., Kimura, T., 2006. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation. J. Control Release. 112, 51-56.   DOI
68 Tantishaiyakul, V., Kaewnopparat, N., Ingkatawornwong, S., 1999. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone. Int. J. Pharm. 181, 143-151.   DOI
69 Serajuddin, A.T., Sheen, P.C., Mufson, D., Bernstein, D.F., Augustine, M.A., 1988. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. Journal of Pharmaceutical Sciences. 77, 414-417.   DOI
70 Sethia, S., Squillante, E., 2002. Physicochemical characterization of solid dispersions of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method. J. Pharm. Sci. 91, 1948-1957.   DOI
71 Shah, J.C., Chen, J.R., Chow, D., 1995. Preformulation study of etoposide. 2. Increased solubility and dissolution rate by solidsolid dispersions. Int. J. Pharm. 113, 103-111.   DOI   ScienceOn
72 Shukla, A.J., 1994. Polymethacrylates. Handbook of Pharmaceutical Excipients.
73 Sheu, M.T., Yeh, C.M., Sokoloski, T.D., 1994. Characterization and dissolution of fenofibrate solid dispersion systems. Int. J. Pharm. 103, 137-146.   DOI
74 Shimpi, S.L., Chauhan, B., Mahadik, K.R., Paradkar, A., 2005. Stabilization and improved in vivo performance of amorphous etoricoxib using Gelucire 50/13. Pharm. Res. 22, 1727-1734.   DOI
75 Shin, S., Oh, I., Lee, Y., Choi, H., Choi, J., 1998. Enhanced dissolution of furosemide by coprecipitating or cogrinding with crospovidone. Int. J. Pharm. 175, 17-24.   DOI
76 Simonelli, A.P., Mehta, S.C., Higuchi, W.I., 1969. Dissolution rates of high energy polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates. J. Pharm. Sci. 58, 538-549.   DOI
77 Sjokvist, E., Nystrom, C., Alden, M., 1992. Physicochemical aspects of drug release XIV. The effects of some ionic and non-ionic surfactants on properties of a sparingly soluble drug in solid dispersions. Int. J. Pharm. 79, 123-133.   DOI
78 Ramadan, E.M., Abd El-Gawad, A.H., Nouh, A.T., 1987. Bioavailability and erosive activity of solid dispersions of some non-steroidal anti-inflammatory drugs. Pharm. Ind. 49, 508-513.
79 Rasenack, N., and Muller, B.W., 2004. Micron-size drug particles: common and novel micronization techniques. Pharm. Dev. Technol. 9, 1-13.   DOI
80 Rodier, E., Lochard, H., Sauceau, M., Letourneau, J.J., Freiss, B., Fages, J., 2005. A three step supercritical process to improve the dissolution rate of Eflucimibe. European Journal of Pharmaceutical Sciences. 26, 184-193.   DOI
81 Sekiguchi, K., Obi, N., Ueda, Y., 1964. Studies on Absorption of Eutectic Mixture. Ii. Absorption of Fused Conglomerates of Chloramphenicol and Urea in Rabbits. Chem. Pharm. Bull. (Tokyo) 12, 134-144.   DOI   ScienceOn
82 Saers, E.S., Nystrom, C., Alden, M., 1993. Physicochemical Aspects of Drug Release .16. The Effect of Storage on Drug Dissolution from Solid Dispersions and the Influence of Cooling Rate and Incorporation of Surfactant. International Journal of Pharmaceutics. 90, 105-118.   DOI
83 Save, T., Venkitachalam, P., 1992. Studies on Solid Dispersions of Nifedipine. Drug Development and Industrial Pharmacy. 18, 1663-1679.   DOI
84 Sekiguchi, K., Obi, N., 1961. Studies on Absorption of Eutectic Mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. 9, 866-872.   DOI
85 Seo, A., Schaefer, T., 2001. Melt agglomeration with polyethylene glycol beads at a low impeller speed in a high shear mixer. Eur. J. Pharm. Biopharm. 52, 315-325.   DOI
86 Serajuddin, A.T., 1999. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88, 1058-1066.   DOI
87 Owusu-Ababio, G., Ebube, N.K., Reams, R., Habib, M., 1998. Comparative dissolution studies for mefenamic acid-polyethylene glycol solid dispersion systems and tablets. Pharm. Dev. Technol. 3, 405-412.   DOI
88 Paradkar, A., Ambike, A.A., Jadhav, B.K., Mahadik, K.R., 2004. Characterization of curcumin-PVP solid dispersion obtained by spray drying. Int. J. Pharm. 271, 281-286.   DOI   ScienceOn
89 Perng, C.Y., Kearney, A.S., Patel, K., Palepu, N.R., Zuber, G., 1998. Investigation of formulation approaches to improve the dissolution of SB-210661, a poorly water soluble 5-lipoxygenase inhibitor. Int. J. Pharm. 176, 31-38.   DOI
90 Passerini, N., Albertini, B., Gonzalez-Rodriguez, M.L., Cavallari, C., Rodriguez, L., 2002. Preparation and characterisation of ibuprofen-poloxamer 188 granules obtained by melt granulation. Eur. J. Pharm. Sci. 15, 71-78.   DOI
91 Pokharkar, V.B., Mandpe, L.P., Padamwar, M.N., Ambike, A.A., Mahadik, K.R., Paradkar, A., 2006. Development, characterization and stabilization of amorphous form of a low T-g drug. Powder Technol. 167, 20-25.   DOI
92 Pouton, C.W., 2006a. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29, 278-287.   DOI
93 Pozzi, F., Longo, A., Lazzarini, C., Carenzi, A., 1991. Formulations of Ubidecarenone with Improved Bioavailability. European Journal of Pharmaceutics and Biopharmaceutics. 37, 243-246.
94 Prabhu, S., Ortega, M., Ma, C., 2005. Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam. Int. J. Pharm. 301, 209-216.   DOI
95 Price, J.C., 1994. Polyethylene glycol. Handbook of Pharmaceutical Excipients
96 Miyazaki, T., Yoshioka, S., Aso, Y., Kojima, S., 2004. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J. Pharm. Sci. 93, 2710-2717.   DOI
97 Moneghini, M., Carcano, A., Zingone, G., Perissutti, B., 1998. Studies in dissolution enhancement of atenolol. Int. J. Pharm. 175, 177-183.   DOI
98 Ning, X., Sun, J., Han, X., Wu, Y., Yan, Z., Han, J., He, Z., 2011. Strategies to improve dissolution and oral absorption of glimepiride tablets: solid dispersion versus micronization techniques. Drug Dev. Ind. Pharm.
99 Muhrer, G., Meier, U., Fusaro, F., Albano, S., Mazzotti, M., 2006. Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: generation of drug microparticles and drug-polymer solid dispersions. Int. J. Pharm. 308, 69-83.   DOI   ScienceOn
100 Mura, P., Faucci, M.T., Manderioli, A., Bramanti, G., and Parrini, P., 1999. Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersions. Drug Dev. Ind. Pharm. 25, 257-264.   DOI
101 Ohara, T., 2005. Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose. Int. J. Pharm. 302, 95-102.   DOI
102 Ohara, T., Kitamura, S., Kitagawa, T., Terada, K., 2005. Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose. Int. J. Pharm. 302, 95-102.   DOI
103 Okonogi, S., Oguchi, T., Yonemochi, E., Puttipipatkhachorn, S., Yamamoto, K., 1997a. Improved dissolution of ofloxacin via solid dispersion. Int. J. Pharm. 156, 175-180.   DOI
104 Okonogi, S., Yonemochi, E., Oguchi, T., Puttipipatkhachorn, S., Yamamoto, K., 1997b. Enhanced dissolution of ursodeoxycholic acid from the solid dispersion. Drug Dev. Ind. Pharm. 23, 1115-1121.   DOI
105 Li, L., AbuBaker, O., Shao, Z.J., 2006. Characterization of poly(ethylene oxide) as a drug carrier in hot-melt extrusion. Drug Dev. Ind. Pharm. 32, 991-1002.   DOI
106 Lo, W.Y., Law, S.L., 1996. Dissolution behavior of griseofulvin solid dispersions using polyethylene glycol, talc, and their combination as dispersion carriers. Drug Dev. Ind. Pharm. 22, 231-236.   DOI
107 Lin, C.W., Cham, T.M., 1996. Effect of particle size on the available surface area of nifedipine from nifedipine-polyethylene glycol 6000 solid dispersions. Int. J. Pharm. 127, 261-272.   DOI
108 Liu, R., 2008. Water-insoluble drug formulation. 669 p.
109 Lloyd, G.R., Craig, D.Q., Smith, A., 1999. A calorimetric investigation into the interaction between paracetamol and polyethlene glycol 4000 in physical mixes and solid dispersions. Eur. J. Pharm. Biopharm. 48, 59-65.   DOI
110 Majerik, V., Charbit, G., Badens, E., Horvath, G., Szokonya, L., Bosc, N., Teillaud, E., 2007. Bioavailability enhancement of an active substance by supercritical antisolvent precipitation. Journal of Supercritical Fluids. 40, 101-110.   DOI
111 Margarit, M.V., Rodriquez, I.C., Cerezo, A., 1994. Physical characteristics and dissolution kinetics of solid dispersions of ketoprofen and polyethylene glycol 6000. Int. J. Pharm. 108, 101-107.   DOI
112 Matsumoto, T., Zografi, G., 1999. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm. Res. 16, 1722-1728.   DOI
113 Mayersohn, M., Gibaldi, M., 1966. New method of solid-state dispersion for increasing dissolution rates. J. Pharm. Sci. 55, 1323-1324.   DOI
114 Kondo, N., Iwao, T., Hirai, K., Fukuda, M., Yamanouchi, K., Yokoyama, K., Miyaji, M., Ishihara, Y., Kon, K., Ogawa, Y., et al., 1994. Improved oral absorption of enteric coprecipitates of a poorly soluble drug. J. Pharm. Sci. 83, 566-570.   DOI
115 Khan, G.M., Zhu, J.B., 1998. Preparation, characterization, and dissolution studies of ibuprofen solid dispersions using polyethylene glycol, talc, and peg-talc as dispersion carriers. Drug. Dev. Ind. Pharm. 24, 455-462.   DOI
116 Khougaz, K., Clas, S.D., 2000. Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J. Pharm. Sci. 89, 1325-1334.   DOI
117 Kim, K.H., Jarowski, C.I., 1977. Surface tension lowering and dissolution rate of hydrocortisone from solid solutions of selected n-acyl esters of cholesterol. J. Pharm. Sci. 66, 1536-1540.   DOI
118 Konno, H., and Taylor, L.S., 2006. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J. Pharm. Sci. 95, 2692-2705.   DOI   ScienceOn
119 Konno, H., and Taylor, L.S., 2008. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm. Res. 25, 969-978.   DOI
120 Langer, M., Holtje, M., Urbanetz, N.A., Brandt, B., Holtje, H.D., and Lippold, B.C., 2003. Investigations on the predictability of the formation of glassy solid solutions of drugs in sugar alcohols. Int. J. Pharm. 252, 167-179.   DOI
121 Leuenberger, H., 2002. Spray freeze-drying - the process of choice for low water soluble drugs? Journal of Nanoparticle Research. 4, 111-119.   DOI
122 Kang, B.K., Lee, J.S., Chon, S.K., Jeong, S.Y., Yuk, S.H., Khang, G., Lee, H.B., Cho, S.H., 2004. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. 274, 65-73.   DOI   ScienceOn
123 Leuner, C., Dressman, J., 2000. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50, 47-60.   DOI
124 Jachowicz, R., 1987. Dissolution rates of partially water-soluble drugs from solid dispersion systems. 1. Prednisolone. Int. J. Pharm. 35, 1-5.   DOI
125 Joshi, H.N., Tejwani, R.W., Davidovich, M., Sahasrabudhe, V.P., Jemal, M., Bathala, M.S., Varia, S.A., Serajuddin, A.T., 2004. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int. J. Pharm. 269, 251-258.   DOI
126 Kanig, J.L., 1964. Properties of Fused Mannitol in Compressed Tablets. J. Pharm. Sci. 53, 188-192.   DOI
127 Karatas, A., Yuksel, N., Baykara, T., 2005. Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol. Farmaco. 60, 777-782.   DOI
128 Karavas, E., Georgarakis, E., Bikiaris, D., 2006a. Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. Eur. J. Pharm. Biopharm. 64, 115-126.   DOI
129 Karavas, E., Ktistis, G., Xenakis, A., Georgarakis, E., 2006b. Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. Eur. J. Pharm. Biopharm. 63, 103-114.   DOI   ScienceOn
130 Kassem, A.A., Zaki, S.A., Mursi, N.M., Tayel, S.A., 1979. Chloramphenicol solid dispersion system 1. Pharm. Ind. 41, 390-393.
131 Gong, K., Viboonkiat, R., Rehman, I.U., Buckton, G., Darr, J.A., 2005. Formation and characterization of porous indomethacin- PVP coprecipitates prepared using solvent-free supercritical fluid processing. J. Pharm. Sci. 94, 2583-2590.   DOI
132 Kearney, A.S., Gabriel, D.L., Mehta, S.C., Radebaugh, G.W., 1994. Effect of polyvinylpyrrolidone on the crystallinity and dissolution rate of solid dispersions of the antiinflammatory Ci-987. Int. J. Pharm. 104, 169-174.   DOI
133 Goldberg, A.H., Gibaldi, M., Kanig, J.L., 1966. Increasing Dissolution Rates and Gastrointestinal Absorption of Drugs Via Solid Solutions and Eutectic Mixtures .2. Experimental Evaluation of a Eutectic Mixture - Urea-Acetaminophen System. Journal of Pharmaceutical Sciences. 55, 482-487.   DOI
134 Goldberg, A.H., Gibaldi, M., Kanig, J.L., Mayersohn, M., 1966. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. IV. Chloramphenicol--urea system. J. Pharm. Sci. 55, 581-583.   DOI
135 Gupta, P., Kakumanu, V.K., Bansal, A.K., 2004. Stability and solubility of celecoxib-PVP amorphous dispersions: a molecular perspective. Pharm. Res. 21, 1762-1769.   DOI   ScienceOn
136 Guyot, M., Fawaz, F., Bildet, J., Bonini, F., Lagueny, A.M., 1995. Physicochemical Characterization and Dissolution of Norfloxacin/Cyclodextrin Inclusion-Compounds and Peg Solid Dispersions. Int. J. Pharm. 123, 53-63.   DOI
137 Hasegawa, S., Hamaura, T., Furuyama, N., Kusai, A., Yonemochi, E., Terada, K., 2005. Effects of water content in physical mixture and heating temperature on crystallinity of troglitazone-PVP K30 solid dispersions prepared by closed melting method. Int. J. Pharm. 302, 103-112.   DOI
138 Forster, A., Hempenstall, J., Rades, T., 2001a. Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. J. Pharm. Pharmacol. 53, 303-315.   DOI   ScienceOn
139 Hirasawa, N., Ishise, S., Miyata, H., Danjo, K., 2003. Physicochemical characterization and drug release studies of nilvadipine solid dispersions using water-insoluble polymer as a carrier. Drug Dev. Ind. Pharm. 29, 339-344.   DOI
140 Itai, S., Nemoto, M., Kouchiwa, S., Murayama, H., Nagai, T., 1985. Influence of wetting factors on the dissolution behavior of flufenamic acid. Chem. Pharm. Bull. (Tokyo) 33, 5464-5473.   DOI   ScienceOn
141 Forster, A., Hempenstall, J., Tucker, I., Rades, T., 2001b. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int. J. Pharm. 226, 147-161.   DOI
142 Frontini, R., Mielck, J.B., 1995. Formation of Formaldehyde in Polyethyleneglycol and in Poloxamer under Stress Conditions. Int. J. Pharm. 114, 121-123.   DOI
143 Garcia-Zubiri, I.X., Gonzalez-Gaitano, G., Isasi, J.R., 2006. Thermal stability of solid dispersions of naphthalene derivatives with beta-cyclodextrin and beta-cyclodextrin polymers. Thermochim. Acta. 444, 57-64.   DOI
144 Gardner, D., 1997. The intelisite capsule: a new easy to use approach for assessing regional drug absorption from gastrointestinal tract. Pharm. Tech. Eur. 9, 46-53.
145 Ghaderi, R., Artursson, P., Carlfors, J., 1999. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Pharm. Res. 16, 676-681.   DOI
146 Ghaste, R., C., D.D., Shah, R.R., Ghodke, D.S., 2009. Solid Dispersions : An Overview. Pharmaceutical Reviews. 7.