Browse > Article
http://dx.doi.org/10.4333/KPS.2011.41.2.059

Nanotechnology in Cancer Therapy: Overview and Applications  

Choi, Eun-Joo (College of Pharmacy, Pusan National University)
Publication Information
Journal of Pharmaceutical Investigation / v.41, no.2, 2011 , pp. 59-65 More about this Journal
Abstract
Nanotechnology for cancer therapy is playing a pivotal role in dramatically improving current approaches to cancer detection, diagnosis, and therapy while reducing toxic side effects associated with previous cancer therapy. A widespread understanding of these new technologies will lead to develop the more refined design of optimized nanoparticles with improved selectivity, efficacy and safety in the clinical practice of oncology. This review provides an integrated overview of applications and advances of nanotechnology in cancer therapy, based on molecular diagnostics, treatment, monitoring, target drug delivery, approved nanoparticle-based chemotherapeutic agents, and current clinical trials in the development of nanomedicine and ultimately personalized medicine.
Keywords
Nanotechnology; Nanomedicine; Nanoparticles; Cancer therapy; Personalized therapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Danson, S., Ferry, D., Alakhov, V., Margison, J., Kerr, D., Jowle, D., Brampton, M., Halbert, G., Ranson, M., 2004. Phase I dose escalation and pharmacokinetic study of pluronicpolymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br. J. Cancer. 90, 2085-2091.   DOI
2 De Jong, W.H., Borm, P.J., 2008. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine 3(2), 133-149.
3 Ducry, L., Stump, B., 2010. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem. 21, 5-13.   DOI
4 Ferrari, M., 2005. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161-171.   DOI
5 Gabizon, A., Catane, R., Uziely, B., Kaufman, B., Safra, T., Cohen, R., Martin, F., Huang, A., Barenholz, Y., 1994. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethyleneglycol coated liposomes. Cancer Res. 54, 987-992.
6 Alivisatos, P., 2004. The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47-52.   DOI
7 Allen, T.M., 2002. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2(10), 750-763.   DOI
8 Batist, G., 2007. Cardiac safety of liposomal anthracyclines. Cardiovasc. Toxicol. 7, 72-74.   DOI
9 Batist, G., Gelmon, K.A., Chi, K.N., Miller, W.H. Jr., Chia, S.K., Mayer, L.D., Swenson, C.E., Janoff, A.S., Louie, A.C., 2009. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin. Cancer Res. 15, 692-700.   DOI
10 Black, K.C., Kirkpatrick, N.D., Troutman, T.S., Xu, L., Vagner, J., Gillies, R. J., Barton, J.K., Utzinger, U., and Romanowski, M., 2008. Gold nanorods targeted to delta opioid receptor: plasmon-resonant contrast and photothermal agents. Mol. Imaging 7(1), 50-57.
11 Cardinal, J., Klune, J.R., Chory, E., Jeyabalan, G., Kanzius, J.S., Nalesnik, M., Geller, D. A., 2008. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery 144, 125-132.   DOI
12 Valle, J.W., Armstrong, A., Newman, C., Alakhov, V., Pietrzynski, G., Brewer, J., Campbell, S., Corrie, P., Rowinsky, E.K., Ranson, M., 2010. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest. New Drugs, Published online, DOI 10.1007/s10637-010-9399-1.   DOI
13 Smith, B.R., Cheng, Z., De, A., Koh, A.L., Sinclair, R., Gambhir, S.S., 2008, Real-Time Intravital Imaging of RGD-Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature. Nano. Lett. 8(9), 2599-2606.   DOI
14 Sutton, D., Nasongkla, N., Blanco, E., Gao, J., 2007. Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res. 24, 1029-1046.   DOI
15 Tassinari, O.W., Caiazzo, R.J., Jr., Ehrlich, J.R., and Liu, B.C., 2008. Identifying autoantigens as theranostic targets: antigen arrays and immunoproteomics approaches. Curr. Opin. Mol. Ther. 10(2), 107-115.
16 Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D.A., Torchilin, V.P., and Jain, R.K., 1995. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55(17), 3752-3756.
17 Santra, S., Kaittanis, C., Grimm, J., and Perez, J. M., 2009. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 5(16), 1862-1868.   DOI   ScienceOn
18 Richter, H., Kettering, M., Wiekhorst, F., Steinhoff, U., Hilger, I., Trahms, L., 2010. Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies. Phys. Med. Biol. 55, 623-633.   DOI
19 Sahoo, S.K., Ma,W., Labhasetwar,V., 2004. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int. J. Cancer 112(2), 335-340.   DOI
20 Sakamoto, J., Annapragada, A., Decuzzi, P., Ferrari, M., 2007. Antibiological barrier nanovector technology for cancer applications. Expert Opin. Drug Deliv. 4, 359-369.   DOI
21 Santra, S., Liesenfeld, B., Dutta, D., Chatel, D., Batich, C. D., Tan, W., Moudgil, B. M., Mericle, R. A., 2005. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J. Nanosci. Nanotechnol. 5(6), 899-904.   DOI
22 Matsumura, Y., 2008. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv. Drug Deliv. Rev. 60, 899-914.   DOI
23 Seymour, L.W., Ferry, D.R., Kerr, D.J., Rea, D., Whitlock, M., Poyner, R., Boivin, C., Hesslewood, S., Twelves, C., Blackie, R., Schatzlein, A., Jodrell, D., Bissett, D., Calvert, H., Lind, M., Robbins, A., Burtles, S., Duncan, R., Cassidy, J., 2009. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 34, 1629-1636.
24 Shenoi, M.M., Anderson, J., Bischof, J.C., 2009. Nanoparticle enhanced thermal therapies. Conf Proc IEEE Eng. Med. Biol. Soc. 2009, 1979-1982.
25 Siegal, T., Horowitz, A., Gabizon, A., 1995. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J. Neurosurg. 83, 1029-1037.   DOI
26 Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538-544   DOI
27 Misra, R., Acharya, S., Sahoo, S.K., 2010. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discovery Today 15, 19-20.
28 Mross, K., Niemann, B., Massing, U., Drevs, J., Unger, C., Bhamra, R., 2004. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother. Pharmacol. 54, 514-524.   DOI
29 Nie, S. Nie, S., Xing, Y., Kim, G.J., Simons, J.W., 2007., Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257-288.   DOI
30 Park, J.W., Benz, C.C., and Martin, F.J., 2004. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin. Oncol. 31(6 Suppl 13), 196-205.   DOI
31 Kirpotin, D.B., Drummond, D.C., Shao, Y., Shalaby, M.R., Hong, K., Nielsen, U.B., Marks, J. D., Benz, C.C., and Park, J.W., 2006 Antibody targeting of longcirculating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66(13), 6732-6740.   DOI
32 Pautler, M., Brenner, S., 2010. Nanotechnology and human health: risks and Benefits. Int. J. of Nanomedicine 5, 803-809.
33 Puri, A., Kramer-Marek, G., Campbell-Massa, R., Yavlovich, A., Tele, S.C., Lee S.B., Clogston, J.D., Patri, A.K., Blumenthal, R., Capala, J., 2008. HER2-specific affibody conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J. Liposome Res. 18, 293-307.   DOI
34 Rahman, A.M., Yusuf, S., Ewer, M.S., 2007. Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int. J. Nanomedicine 2, 567-583.
35 Kong, G., Braun, R.D., Dewhirst, M.W., 2000. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 60(16), 4440-4445.
36 Krishnan, S., Diagaradjane, P., Cho, S.H., 2010. Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int. J. Hyperthermia 26, 775-789.   DOI
37 Kumar, M., Yigit, M., Dai, G., Moore, A., Medarova, Z., 2010. Image-guided breast tumor therapy using a siRNA nanodrug. Cancer Res. 70,7553-7561.   DOI
38 Lammers, T., Hennink, W. E., and Storm,G., 2008. Tumour-targeted nanomedicines: principles and practice. Br. J. Cancer 99(3), 392-397.   DOI
39 Maeda, H., Matsumura, Y., 1989. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carrier Syst. 6(3), 193-210.
40 Maruyama, K., Unezaki, S., Yuda, T., Ishida, O., Takahashi, N., Suginaka, A., et al., 1994. Enhanced delivery and antitumor effect of doxorubicin encapsulated in long-circulating liposomes. J. Liposome Res. 4, 143-165.   DOI
41 Matsumura, Y., Gotoh, M., Muro, K., Yamada, Y., Shirao, K., Shimada, Y., Okuwa, M., Matsumoto, S., Miyata, Y., Ohkura, H., Chin, K., Baba, S., Yamao, T., Kannami, A., Takamatsu, Y., Ito, K., Takahashi, K., 2004a. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol. 15, 517-525.   DOI
42 Matsumura, Y., Hamaguchi, T., Ura, T., Muro, K., Yamada, Y., Shimada, Y., Shirao, K., Okusaka, T., Ueno, H., Ikeda, M., Watanabe, N., 2004b. Phase I clinical trial and pharmacokinetic evaluations of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer 91, 1775-1781.   DOI
43 Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S., 2005. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63-72.   DOI
44 Gaster, R.S., Hall, D.A., Nielsen, C.H., Osterfeld, S.J., Yu, H., Mach, K.E., Wilson, R.J., Murmann. B., Liao, J.C., Gambhir, S.S., Wang, S.X., 2009. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 15, 1327-1332.   DOI
45 Grobmyer, S.R., Iwakuma, N., Sharma, P., Moudgil B.M., 2010. What is cancer nanotechnology? Methods Mol. Biol. 624, 1-9.   DOI
46 Grodzinski, P. Silver, M., Molnar, L.K., 2006. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev. Mol. Diagn. 6, 307-318.   DOI
47 Hilger, I., Hergt, R., Kaiser, W.A., 2005. Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE, Proc. Nanobiotechnol. 152, 33-39.   DOI
48 Jain, K.K., 2005. Role of nanobiotechnology in developing personalized medicine for cancer. Technol. Cancer Res. Treat. 4, 407-416.
49 Huff, T.B., Tong, L., Zhao, Y., Hansen, M.N., Cheng, J.X., Wei, A., 2007. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond) 2, 125-132.   DOI
50 Ito, A., Kuga, Y., Honda, H., Kikkawa, H., Horiuchi, A., Watanabe, Y., Kobayashi, T., 2004. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett. 212, 167-175.   DOI
51 Jain, K.K., 2007. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 53, 2002-2009.   DOI
52 Jain, K.K., 2010. Advances in the field of nanooncology. BMC Medicine 8:83.   DOI
53 Carter, P.J., Senter, P.D., 2008. Antibody-drug conjugates for cancer therapy. Cancer J. 14, 154-169.   DOI
54 Chia, S., Clemons, M., Martin, L.A., Rodger, S.A., Gelmon, K., Pond, G.R., Panasci, L., 2006. Pegylated liposomal doxorubicin and trastuzumab in HER-2 overexpressing metastatic breast cancer: a multicenter phase II trial. J. Clin. Oncol. 24, 2773-2778.   DOI
55 Cho, K., Wang, X., Nie, S., Chen, Z.G., and Shin, D.M., 2008. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14(5), 1310-1316.   DOI
56 Choi, J.S., Jun, Y.W., Yeon, S.I., Kim, H.C., Shin, J. S., Cheon, J., 2006. Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 128, 15982-15983.   DOI
57 Cuenca, A.G., Jiang, H., Hochwald, S.N., Delano, M., Cance, W.G., Grobmyer, S.R., 2006. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107, 459-466.   DOI