Browse > Article
http://dx.doi.org/10.4333/KPS.2011.41.1.037

Quantitative and Comparative Analysis of Urinary Steroid Levels upon Treatment of an Anti-Diabetic Drug, CKD-501 using Gas Chromatography-Mass Spectrometry  

Sadanala, Krishna Chaitanya (Integrated Omics Center, Korea Institute of Science and Technology)
Jung, Byung-Hwa (Integrated Omics Center, Korea Institute of Science and Technology)
Jang, In-Jin (Department of Pharmacology, Clinical Pharmacology & Clinical Trials Center, Seoul National University College of Medicine & Hospital)
Chung, Bong-Chul (Integrated Omics Center, Korea Institute of Science and Technology)
Publication Information
Journal of Pharmaceutical Investigation / v.41, no.1, 2011 , pp. 37-43 More about this Journal
Abstract
Urinary steroid levels were investigated in the treatment of CKD-501, a new anti-diabetic drug candidate. CKD-501 was administered orally at the dosage of 1, 2, 4 mg/day for 7 days to normal men (n=18). Urine was collected before, during and after stopping the drug administration and the urinary level of androgen, estrogen, progestin and corticoids were quantified using GC-MS (gas chromatography-mass spectrometry). Only urinary corticosteroid and an androgen, DHEA levels among all the analyzed steroids, have been found to increase progressively, reaching significant levels on the last day of drug treatment and later declined after the drug treatment is withdrawn. Therefore, it was thought that an increase in the urinary corticoid and DHEA levels could be a characteristic of CKD-501, since it prominently acts on the glucose sensitivity and suppresses the triglyceride levels. In conclusion, it was found that CKD-501, an anti-diabetic drug candidate, affects the glucocorticoid and DHEA levels and it plays a crucial role in glucose homeostasis.
Keywords
CKD-501; Diabetes; Steroids; GC-MS; PPAR (Peroxisome proliferator-activated receptor);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Norgren, S., Arner, P., Luthman, H., 1994. Insulin receptor ribonucleic acid levels and alternative splicing in human liver, muscle, and adipose tissue: tissue specificity and relation to insulin action. J. Clin. Endocrinol. Metab. 78, 757-762.   DOI
2 Orasanu, G., Ziouzenkova, O., Devchand, P.R., Nehra, V., Hamdy, O., Horton E.S., Plutzky, J., 2008. The peroxisome proliferator-activated receptor-gamma agonist pioglitazone represses inflammation in a peroxisome proliferator-activated receptoralpha-dependent manner in vitro and in vivo in mice. J. Am. Coll. Cardiol. 52, 869-881.   DOI
3 Tomilson, J.W., Joanne, F., Christopher, G., Hughes, B.A., Susan, V. H., Paul, M. S., 2008. Impaired glucose tolerance and insulin resistance are associated with increased adipose $11{\beta}-hydroxysteroid$ dehydrogenase type 1 expression and elevated hepatic $5{\alpha}-reductase$ activity. Diabetes. 57, 2652-2660.   DOI
4 Wang, Q., Dryden, S., Frankish, H. M., Bing, C., Pickavance, L., Hopkins, D., Buckingham, R., Williams, G., 1997. Increased feeding in fatty Zucker rats by the thiazolidinedione BRL 49653 (rosiglitazone) and the possible involvement of leptin and hypothalamic neuropeptide Y. Br. J. Pharmacol. 122, 1405-1410.   DOI
5 Harris, M.I., Flegal, K.M., Cowie, C.C., Eberhardt, M.S., Goldstein, D.E., Little, R.R., Wiedmeyer, H.M., Byrd-Holt, D.D., 1998. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. Diabetes Care. 21, 518-524.   DOI
6 Hevener, A.L., Olefsky, J.M., Reichart, D., Nguyen M.T.A., Bandyopadyhay, G., Leung, H.Y., Watt, M.J., Benner, C., Febbraio, M.A., Nguyen, A.K., Folian, B., Subramaniam, S., Gonzalez, F.J., Glass, C.K., Ricote, M., 2007. Macrophage $PPAR{\gamma}$ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 117, 1658-1669.   DOI   ScienceOn
7 Jay, M.A., Ren, J., 2007. Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr. Diabetes. 3, 33-39.   DOI
8 Lee, J. H., Woo, T.A., Hwang, I.C., Kim, C. Y., Kim, D. D., Shim, C. K., Chung, S.J., 2009. Quantification of CKD-501, lobeglitazone, in rat plasma using a liquid-chromatography/tandem mass spectrometry method and its applications to pharmacokinetic studies. J. Pharmaceut. Biomed. Anal. 50, 872-877.   DOI
9 Kassirer, J.P., 1971. Clinical evaluation of kidney function − glomerular function. N. Engl. J. Med. 285, 385-389.   DOI
10 Kempna, P., Hofer, G., Mullis, P.E., Fluck, C.E., 2007. Pioglitazone inhibits androgen production in NCI-H295R cells by regulating gene expression of CYP17 and HSD3B2. Mol. Pharmacol. 71, 787-798.
11 Moon, J.Y., Jung, H.J., Moon, M.H., Chung, B.C., Choi, M.H., 2009. Heat-map visualization of gas chromatography-mass spectrometry based quantitative signatures on steroid metabolism. J. Am. Soc. Mass Spectrom. 20, 1626-1637.   DOI
12 Betz, M.J., Shapiro, I., Fassnacht, M., Hahner, S., Reincke, M., Beuschlein, F., 2005. Peroxisome proliferator-activated $receptor-{\gamma}$ agonists suppress adrenocortical tumor cell proliferation and induce differentiation. J. Clin. Endocrinol. Metab. 90, 3886-3896.   DOI
13 Blaschke, F., Takata, Y., Caglayan, E., Law, R.E., Hsueh, W.A., 2006. Nuclear receptors as potential target for the treatment and prevention of cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 26, 28-40.   DOI
14 Desvergne, B., Michalik, L., Wahli, W., 2004. Be Fit or Be Sick: Peroxisome proliferator-activated receptors are down the road. Mol. Endocrinol. 18, 1321-1332.   DOI
15 Froment, P., Gizard, F., Defever, D., Staels, B., Dupont, J., Monget, P., 2006. PPARs and RXRs in male and female fertility and reproduction. J. Endocrinol. 189, 199-209.   DOI
16 Dzhamilja, S., Nadezhda, P., Enn, S., Alexander, Z., Allen, K., 2006. Dehydroepiandrosterone inhibits complex I of the mitochondrial respiratory chain and is neurotoxic In vitro and In vivo at high concentrations. Toxicological Sciences. 93(2), 348-356.   DOI
17 Ferre, P., 2004. The biology of peroxisome proliferator-activated receptors. Diabetes. 53, S43-S50.   DOI   ScienceOn
18 Freeman, D.A., Romero, A., 2003. Effects of troglitazone on intracellular cholesterol distribution and cholesterol-dependent cell functions in MA-10 Leydig tumor cells. Biochem. Pharmacol. 66, 307-313.   DOI
19 Galina, A., Roberto, A.S.S., Zoltan, B., Radina, M.K., Alex, O., 2005. Dehydroepiandrosterone inhibits the amplification of glucocorticoid action in adipose tissue. Am J. Physiol. Endocrinol. Metab. 288, E957-E964.   DOI
20 Baxter, J.D., Rousseau, G.G., 1979. Glucocorticoid hormone action: an overview. Monogr. Endocrinol. 12, 1-24.
21 Berthiaume, M., Sell, H., Lalonde, J., Gelinas, Y., Tchernof, A., Richard, D., Deshaies, Y., 2004. Actions of PPARγ agonism on adipose tissue remodeling, insulin sensitivity, and lipemia in absence of glucocorticoids. Am J. Physiol. Regul. Integr. Comp Physiol. 287, R1116-R1123.   DOI