Browse > Article
http://dx.doi.org/10.4333/KPS.2004.34.4.305

Release Profile and Stability of Anionic Liposomes  

Nam, Da-Eun (Department of Chemical Engineering, Chungbuk National University)
Han, Hee-Dong (Nanobiomaterials Lab. Korea Research Institute of Chemical Technology)
Park, Yun-Jung (Nanobiomaterials Lab. Korea Research Institute of Chemical Technology)
Kim, Yun-A (Nanobiomaterials Lab. Korea Research Institute of Chemical Technology)
Shin, Byung-Cheol (Nanobiomaterials Lab. Korea Research Institute of Chemical Technology)
Publication Information
Journal of Pharmaceutical Investigation / v.34, no.4, 2004 , pp. 305-310 More about this Journal
Abstract
This study was to prepare the anionic liposomes which were to release anticancer drug (doxorubicin) at the hyperthermia temperature $({\sim}42^{\circ}C)$ and to stabilize in bovine serum solution at $37^{\circ}C$. The vesicle size and zeta potential of liposomes in Tris-HCl buffered solution (pH 7.4) were measured by an electrophoretic light scattering spectrophotometer. To estimate the stability of liposomes, liposome size was measured in bovine serum solution at $37^{\circ}C$ for 72 h. The release of doxorubicin from liposome was determined by measuring the fluorescence intensity using fluorescence spectrophotometry with temperature and time. The size of liposomes was from 120 to 160 nm and zeta potential was from $-33.3{\pm}2.4$ to $-75.6{\pm}6.9\;mV$. Anionic liposome was stabilized in bovine serum solution at $37^{\circ}C$ within 72 h. Additionally, the release transition temperature of doxorubicin from liposomes was increased by increasing mole % of anionic phospholipid.
Keywords
Anionic liposome; Doxorubicin; Bovine serum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Sharma and U.S. Sharma, Liposomes in drug delivery: progress and limitations, Int. J. Pharm., 154, 123-140 (1997)   DOI   ScienceOn
2 Y. Barenholz, Document title liposome application: problems and prospects, Current Opinion in Colloid & Interface Sci.,6, 66-77 (2001)
3 A.S.L. Derycke and P.A.M. de Witte, Liposomes for photodynamic therapy, Adv. Drug Deliv. Rev., 56, 17-30 (2004)   DOI   ScienceOn
4 S. Simoes, J.N. Moreira, C. Fonseca, N. Duzgunes and M.C. Pedroso de Lima, On the formulation of pH-sensitive liposomes with long circulation times, Adv. Drug Deliv. Rev., 56, 947-965 (2004)   DOI   ScienceOn
5 M.H. Gaber, N.Z. Wu, K Hong, KH. Shi, M.W Dewhirst, and D. Papahadjopoulos, Thermosensitive lipPsoJlles: extravasation and release of contents in tumor microvascular networks, Int. J. Radia. Oncology, Biology, Physics, 36, 1177-1187 (1996)   DOI   ScienceOn
6 G. Kong, G. Anyarambhatla, WP. Petros, R.D. Braun, O.M. Colvin, D. Needham and M.W Dewhirst, Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release, Cancer Res., 60, 6950-6957 (2000)
7 A Hillery, Heat-sensitive liposomes for tumour targeting, Drug Discov. Today, 6, 224-225 (2001)   DOI   ScienceOn
8 P. Vermette and L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms, Colloids and Surfaces, 28, 153-198 (2003)
9 J.L. Rigaud, M.T. Patemostre and A Bluzat, Mechanisms of membrane protein insertion into liposomes during reconstitu-tion procedures involving the use of detergents. 2. Incor-poration of the light-driven proton pump bacteriorhodopsin, Bipcherrtistry, 27. 2677-2688 (1988)
10 D.C. Johathan and M.G.T. Kevin, Fatt6rs Mfecting the size distribution of liposomes produced by freeze-thaw extrusion, Int. J. Pharm., 188, 87-95 (1999)   DOI   ScienceOn
11 K. Maruyama, S. Unezaki, N. Takahashi and M. Iwatsuru, Enhanced delivery of doxorubicin to tumor by longcirculating thermosensitive liposomes and local hyperthermia, Bioch. Biophy. Acta, 1149, 209-216 (1993)   DOI   ScienceOn
12 K. Kono, R. Nakai, K. Morimoto and T. Takagishi, Thermosensitive polymer-modified liposomes that release contents around physiological temperature, Bioch. Biophy. Acta, 1416, 239-250 (1999)   DOI   ScienceOn
13 J.C. Kim, S.K. Bae and J.D. Kim, Temperature-sensitivity of liposomal lipid bilayers mixed with poly (n-isopropyla-crylamide-co-acrylic acid), J. Biochem., 121, 15-19 (1997)   DOI   ScienceOn
14 Lian, H. Tianshun and J.Y. Rodney, Trends and developments in liposome drug delivery systems, J. Pharm. Sci., 90, 667-680 (2001)   DOI   ScienceOn
15 G.R. Anyarambhatla and D. Needham, Enhancement of the phase transition permeability of DPPC liposomes by incorporation of MPPC: A new temperature-sensitive liposome for use with mild hyperthermia, J Liposome Res., 9, 491-506 (1999)   DOI   ScienceOn
16 O. Ishida, K. Maruyama, H. Yanagie, M. Eriguchi and M. Iwatsuru, Targeting chemotherapy to solid tumors with long-circulating thermosensitive liposomes and local hyperthermia, Japan. Can. Assoc., 91, 118-126 (2000)
17 M.C. Woodle, Controlling liposome blood clearance by surfacegrafted polymers, Adv. Drug Deliv. Rev., 32, 139-152 (1998)   DOI   ScienceOn
18 A Ono, K Takeuchi, A Sukenari, T. Suzuki, I. Adachi anq M. Ueno, Reconsideration of drug release from temperature-sensitive liposomes, Bio. Phann. Bull., 25, 97-133 (2002)   DOI   ScienceOn
19 W Lin, M.C. Garnett, M.C. Davies, F. Bignotti, P. Ferruti, S.S. Davis and L. Illum, Preparation of surface-modified albumin nanospheres, Biomaterials, 18, 559-565 (1997)   DOI   ScienceOn
20 S.A Johnstone, D. Masin, L. Mayer and M.B. Bally, Surface-associated serum proteins inhibit the uptake of phosphati-dylserine and poly(ethylene glycol) liposomes by mouse macrophages, Bioch. Biophy. Acta, 1513, 25-37 (2001)   DOI   ScienceOn
21 P. Walde and S. Ichikawa, Enzymes inside lipid vesicles: preparation, reactivity and applications, Biom. Eng., 18, 143-177 (2001)   DOI   ScienceOn
22 G. Gregoriadis, Liposome technology 2nd edition: Liposome preparation and related techniques, vol. I, CRS press, london, England, pp. 123-139 (1993)
23 D.C. Litzinger, A.M.J. Buiting, N. van Rooijen and L. Huang, Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes, Bioch. Biophy. Acta, 1190, 99-107 (1994)   DOI   ScienceOn
24 H.S. Jeon, SK Lee and Y.WJ. Choi, Physical characteristics of sterically stabilized liposomes after lyophilization and rehydration, Kor. Phann. Sci., 31, 4-473 (2001)