Browse > Article

A Comparison of Discriminating Powers between 13 Microsatellite Markers and 37 Single Nucleotide Polymorphism Markers for the Use of Pork Traceability and Parentage Test of Pigs  

Lee, Jae-Bong (Insti. of Agric. & Life Sci., Gyeongsang National Univ.)
Yoo, Chae-Kyoung (Div. of Applied Life Sci. (BK21 program) Gyeongsang National Univ.)
Jung, Eun-Ji (Div. of Applied Life Sci. (BK21 program) Gyeongsang National Univ.)
Lee, Jung-Gyu (Insti. of Agric. & Life Sci., Gyeongsang National Univ.)
Lim, Hyun-Tae (Insti. of Agric. & Life Sci., Gyeongsang National Univ.)
Publication Information
Journal of agriculture & life science / v.46, no.5, 2012 , pp. 73-82 More about this Journal
Abstract
Allele information from the analysis of the 13 microsatellite (MS) markers, were classified into the $F_0$, $F_1$ and $F_2$ generations, and probabilities of the same individual emergency in each generation was calculated. As a result, the 13 MS markers showed an estimate of $3.84{\times}10^{-23}$ on the premise of the randomly mated group of $F_2$, which implies that the same individuals may emerge by the use of 37 kinds of SNP markers. In this study, the experimental pigs were intercross between only 2 breeds (Korean native pig and Landrace). In addition, the success rate of paternity tests was analyzed on the whole group, by the use of the 13 MS markers and 37 SNP markers. As regards the exclusionary power of the second parent ($PE_{pu}$), MS markers and SNP markers showed 0.97897 and 0.99149, respectively. In relation to the parent exclusion power of both parent (PE), MS markers and SNP markers showed 0.99916 and 0.99949, respectively. In the case of the estimate to identify parental candidates that had the highest probability ($PNE_{pp}$), the two showed 1.00000 all. The Korean pig industry tends to mass produce hogs with limited numbers of alleles in limited parents. Such being the case, there is a need to organize a marker, for which it is imperative to find markers with high efficiency and high economic feasibility of the characteristics of DNA markers, sample size, the accuracy and expenses of genotyping cost, the manageability of data and the compatibility among analysis systems.
Keywords
Microsatellite(MS); Single Nucleotide Polymorphism(SNP); Generation; Individual; Paternity test;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Achmann, R., I. Curik, P. Dovc, T. Kavar, I. Bodo, F. Habe, E. Marti, J. Solkner, and G. Brem. 2004. Microsatellite diversity, population subdivision and gene flow in the Lipizzan horse. Anim. Genet. 35: 285-292.   DOI   ScienceOn
2 Ayres, K. L. and A. D. J. Overall. 2004. API-CALC 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Molecular Eco. Notes 4: 315-318.   DOI   ScienceOn
3 Ayub, Q., A. Mansoor, M. Ismail, S. Khaliq, A. Mohyuddin, A. Hameed, K. Mazhar, S. Rehman, S. Siddiqi, M. Papaioannou, A. Piazza, L. L. Cavalli-Sforza, and S. Q. Mehdi. 2003. Reconstruction of human evolutionary tree using polymorphic autosomal microsatellites. Am. J. Phys. Anthropol. 122: 259-268.   DOI   ScienceOn
4 Ballester, M., A. Mercade, B. van Haandel, J. Santamartina, and A. Sanchez. 2007. Individual identification and genetic traceability in the pig using the SNPlexTM genotyping system. Anim. Genet. 37: 1-3.
5 Borrell, Y. J., H. Pineda, I. McCarthy, E. Vazquez, J. A. Sanchez, and G. B. Lizana. 2004. Correlations between fitness and heterozygosity at allozyme and microsatellite loci in the Atlantic salmon, Salmo salar L. Heredity 92: 585-593.   DOI   ScienceOn
6 Fang, M., X. Hu, T. Jiang, M. Braunschweig, L. Hu, Z. Du, J. Feng, Q. Zhang, C. Wu, and N. Li. 2005. The phylogeny of Chinese indigenous pig breeds inferred from microsatellite markers. Anim. Genet. 36: 7-13.   DOI   ScienceOn
7 Fries, R., A. Eggen, and G. Stranzinger. 1990. The bovine genome contains polymorphic microsatellites. Genomics 8: 403-406.   DOI
8 Hara, K., S. Watanabe, H. Mukai, and H. Mannen. 2010. Development of SNP markers for individual identification and parentage test in a Japanese Black cattle population. Anim. Sci. J. 81: 152-157.   DOI   ScienceOn
9 Heaton, M. P., G. P. Harhay, G. L. Bennett, R. T. Stone, W. M. Grosse, E. Casas, J. W. Keele, T. P. Smith, C. G. Chitko-McKown, and W. W. Laegreid. 2002. Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mamm. Genome 13: 272-281.   DOI   ScienceOn
10 Heyen, D. W., J. E. Beever, Y. Da, R. E. Everts, C. Green, H. A. Lewin, S. R. E. Bates, and J. S. Ziegle. 1997. Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semiautomated parentage testing. Anim. Genet. 28: 21-27.   DOI   ScienceOn
11 Jakse, J., Z. Satovic, and B. Javornik. 2004. Microsatellite variability among wild and cultivated hops (Humulus lupulus L.). Genome 47: 889-899.   DOI   ScienceOn
12 Kim, S. W., X. Li, Y. M. Lee, J. J. Kim, T. H. Kim, B. W. Choi, and K. S. Kim. 2010. Development of SNP markers for domestic pork traceability. J. Anim. Sci. Technol. 52: 91-96.   DOI
13 Lim, H. T., B. Y. Seo, E. J. Jung, C. K. Yoo, T. Zhong, I. C. Cho, D. Yoon, J. G. Lee, and J. T. Jeon. 2009. Establishment of a microsatellite marker set for individual, pork brand and product origin identification in pigs. J. Anim. Sci. Technol. 51: 1- 10.   DOI
14 Marshall, T. C., J. Slate, L. E. B. Kruuk, and J. M. Pemberton. 1998. Statistical confidence for likelihoodbased paternity inference in natural populations. Mol. Ecol. 7: 639-655.   DOI   ScienceOn
15 Metta, M., S. Kanginakudru, N. Gudiseva, and J. Nagaraju. 2004. Genetic characterization of the Indian cattle breeds, Ongole and Deoni (Bos indicus), using microsatellite markers - a preliminary study. BMC. Genet. 5: 16.
16 Miller M. C., A. Sood, B. F. Spielvogel, and I. H. Hall. 1998. The synthesis and antitumor activity of the sodium salt and copper (II) Complex of N-[(Trimethylamineboryl)-Carbonyl]-L-phenylalanine methyl ester. Metal-Based Drugs 5: 1-9.   DOI   ScienceOn
17 Rohrer, G. A., B. A. Freking, and D. Nonneman. 2007. Single nucleotide polymorphisms for pig identification and parentage exclusion. Anim. Genet. 38: 253-258.   DOI   ScienceOn
18 Shaun, P., N. Benjamin, T. B. Kathe, T. Lori, A. R. F. Manuel, B. David, M. Julian, S. Pamela, I. W. B. Paul, J. D. Mark, and C. S. Pak. 2007. PLINK: A tool set for whole-genome association and populationbased linkage analyses. Am. J. Hum. Genet. 81: 559-575.   DOI   ScienceOn