Browse > Article

Morphological and Genetic Characterization of Caffeine-Rich and -Poor Tea Tree (Camellia sinensis L.) Lines  

Kim, Yong-Duck (Institute of Hadong Green Tea)
Jeong, Mi-Jin (Div. of Environ. Forest Sci., Gyeongsang National Univ. (Insti. of Agric. and Life Sci.))
Song, Hyun-Jin (Div. of Environ. Forest Sci., Gyeongsang National Univ. (Insti. of Agric. and Life Sci.))
Yun, Seok-Rak (Hanbaek Forest Health & Protection Institute)
Heo, Chang-Mi (Div. of Environ. Forest Sci., Gyeongsang National Univ. (Insti. of Agric. and Life Sci.))
Kim, Chang-Soo (Dept. of Forest Genetic Resources, Korea Forest Research Institute)
Moon, Hyun-Shik (Div. of Environ. Forest Sci., Gyeongsang National Univ. (Insti. of Agric. and Life Sci.))
Choi, Myung-Suk (Div. of Environ. Forest Sci., Gyeongsang National Univ. (Insti. of Agric. and Life Sci.))
Publication Information
Journal of agriculture & life science / v.45, no.5, 2011 , pp. 1-8 More about this Journal
Abstract
In this study, 160 tea tree (Camellia sinensis L.) lines were classified by caffeine content using colorimetric methods. Among them, caffeine-rich lines (HR-78, HR-137, HR-82 and HR-123) and poor lines (HP-85, HP-88, HP-19, and HP-131) were selected. To know the difference in morphological and genetic characters between caffeine-rich and poor lines, we used leaf/shoot growth and RAPD methods. Cluster pattern of morphological characters (leaf width, leaf length, leaf area and shoot length) showed that shoot length was longer in caffein-rich lines than in -poor lines. In genetic analysis, amplified DNA bands having various sizes were detected in RAPD analysis where 30 random primers were used. However, the discriminated primer set that distinguish caffein-rich tree line from -poor lines was not found. These results can be used as the basic data to determine the morphological and genetic differences among caffein-rich and -poor lines.
Keywords
Selection; Tea tree; Caffeine; Morphological character; RAPD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carrillo, J. A. and J. Benitez. 2000. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 39. 127-153.   DOI   ScienceOn
2 Crawford, D. J., D. W. Haines, M. B. Cosner, D. Wiens, and P. Lopez. 1994. Lactoris fernandeziana on the Juan Fernandez Islands: allozyme uniformity and field observation. Conserv. Biol. 8:277-280.   DOI   ScienceOn
3 Dice, L. R. 1945. Measures of the amount of ecologic association between species. Ecol. 26: 297-302.   DOI   ScienceOn
4 Eden, T. 1958. The development of tea culture. Tea. pp. 1 - 4. Longman, London.
5 Fritsch, D. S., S. M. Pizer, L. Yu, V. E. Johnson, and E. L. Chaney. 1993. Segmentation, of medical image objects using deformable shape loci, in Proceedings, IPMI '97: Information Processing in Medical Imaging. J. Duncan, G. Gindi, pp. 127-140. Eds.
6 Kaundun, S. S. and Y. G. Park. 2002. Genetic structure of six Korean tea population as revealed by RAPD-PCR markers. Crop Sci. 42: 594-601.   DOI
7 Kim, Y. D., J. Y. Min, C. S. Karigar, G. W. Cheong, J. W. Kim, and M. S. Choi. 2007. Rapid screening and selection of low-caffeinecontentaining tea (Camellia sinensis) trees by a colorimetric method. Plant Breeding 126: 634-637.   DOI   ScienceOn
8 Klimbunga, S., P. Ampayup, A. Tassanakajon, P. Jarayabhand, and W. Yoosukh. 2000. Development of species-specific markers of the tropical oyster (Crassostrea belcheri) in Thailand. Mar. Biotechnol. 2: 476-484.
9 Lee, Y. H., K. W. Song, Y. M. Chung, and J. H. Choi. 2002. Analysis of genetic relationships among leaf characteristics in collected varieties of native tea by RAPD. J. Korea Tea Soc. 18: 99- 109.
10 Laitinen, M. L., R. J. Tiitto, K. J. Heinonen, and M. Rousi. 2004. Variation in birch bark secondary chemistry between and within clones: Implications for herbivory. Oikos 104: 316-326.   DOI   ScienceOn
11 Laitinen, M. L. and R. J. Tiitto, J. Tahvanainen, J. Heinonen. and M. Rousi. 2005. Variation in birch (Betula pendula) shoot secondary chemistry due to genotype, environment and ontogeny. J. of Chem. Ecol. 31: 697-717.   DOI   ScienceOn
12 Mondal, T. K., A. Bhattacharya, M. Laxmi kumaran, and P. S. Ahuja. 2004. Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tissue Organ Cult. : 76: 195-254.   DOI
13 Nichols-Oriens, C. M., R. S. Fritz and T. P. Clausen. The genetic basis for variation in the concentration of phenolic glycosides in Salix sericea: Clonal variation andsex-based differences. Biochem. Syst. Ecol. 21: 535-542.
14 Oh, M. J. and B. H. Hong. 1999. Genetic relationship among Korean Native tea tree (Camellia sinensis L.) using RAPD markers. Korean J. Breeding. 27: 140-147.
15 Park, Y. G., S. S. Kaundun, and A. Zhyvoloup. 2002. Use of the bulked genomic DNA-based RAPD methodology to assess the genetic diversity among abandoned Korea tea plantations. Genetic Res Crop Evol. 49: 159-165.   DOI   ScienceOn
16 Pei, Y. L., Y. P. Zou, Z. Yin, X. O. Wang, Z. X. Zhang, and D. Y. Hong. 1995. Preliminary report of RAPD analysis in Paeonia suffruticosa subsp. Spontanea and P. rockii. Acta Phytotaxon Sin. 33: 350-356.
17 Reichardt, P. B. 1981. Papyriferic acid: A triterpenoid from Alaskan paper birch. J. Organic. Chem. 46: 4576-4578.   DOI
18 Welsh, J., C. Petersen, and M. McClelland. 1991. Polymorphisms generated by arbitrarily by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Res. 19: 303-306.   DOI   ScienceOn
19 Su, Y. J., T. Wang, and C. Huang. 1999. RAPD analysis of different population of Dacydium pierrei. Acta Sci Nat Univ. Sun yat-seni. 38: 99-101.
20 Wang, X. Q., Y. P. Zou, D. M. Zhang, and D. Y. Hong. 1996. RAPD analysis for genetic polymorphism in Cathaya argyrophylla. Sciencein China(C). 26: 437-441.
21 Islam, G. M. R., M. Iqbal, K. G. Quddus, and M. Y. Ali. 2005. Present status and future needs of tea industry in Bangladesh. Proc. Pakistan Acad. Sci. 42: 305-314.