Browse > Article
http://dx.doi.org/10.11629/jpaar.2017.12.30.165

Dilution methods for combustion aerosol measurement from stationary emission sources: A review  

Woo, Chang Gyu (Department of Eco-Machinery Systems, Korea Institute of Machinery & Materials)
Kim, Hak-Joon (Department of Eco-Machinery Systems, Korea Institute of Machinery & Materials)
Kim, Yong-Jin (Department of Eco-Machinery Systems, Korea Institute of Machinery & Materials)
Han, Bangwoo (Department of Eco-Machinery Systems, Korea Institute of Machinery & Materials)
Kang, Su Ji (Clean Power Generation Laborator, KEPCO Research Institute)
Chun, Sung-Nam (Clean Power Generation Laborator, KEPCO Research Institute)
Publication Information
Particle and aerosol research / v.13, no.4, 2017 , pp. 165-172 More about this Journal
Abstract
For precise particle measurements in combustion environments, various dilution sampling methods were compared. Dilution equipments using dilution tunnels and hot/cold dilution with porous tube dilutors were most frequently used so far. The combination of porous tube dilutor and ejector diluter has relatively small footprint, and it results in lower particle losses compared to other methods. To determine the portion of condensable particulate matter, proper temperature control and flow control is required.
Keywords
sampling; PM10; PM2.5; dilution;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Reda, A. A., Schnelle-Kreis, J., Orasche, J., Abbaszade, G., Lintelmann, J., Arteaga-Salas, J. M., Stengel, B., Rabe, R., Harndorf, H., Sippula, O., Streibel, T., and Zimmermann, R. (2015b). Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation. Atmospheric Environment, 112, 370-380.   DOI
2 Saarnio, K., Frey, A., Niemi, J. V., Timonen, H., Ronkko, T., Karjalainen, P., Vestenius, M., Teinila, K., Pirjola, L., Niemela, V., Keskinen, J., Hayrinen, A., and Hillamo, R. (2014). Chemical composition and size of particles in emissions of a coal-fired power plant with flue gas desulfurization. Journal of Aerosol Science, 73, 14-26.   DOI
3 Streibel, T., Schnelle-Kreis, J., Czech, H., Harndorf, H., Jakobi, G., Jokiniemi, J., Karg, E., Lintelmann, J., Matuschek, G., Michalke, B., Müller, L., Orasche, J., Passig, J., Radischat, C., Rabe, R., Reda, A., Ruger, C., Schwemer, T., Sippula, O., Stengel, B., Sklorz, M., Torvela, T., Weggler, B., and Zimmermann, R. (2017). Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. Environmental Science and Pollution Research, 24, 10976-10991.   DOI
4 Tissari, J., Hytonen, K., Lyyranen, J., and Jokiniemi, J. (2007). A novel field measurement method for determining fine particle and gas emissions from residential wood combustion. Atmospheric Environment, 41, 8330-8344.   DOI
5 U.S. Environmental Protection Agency. Conditional Test Method 039. Measurement of PM 2.5 and PM 10 Emissions by dilution sampling, Office of Air Emission Measurement Center; Research Triangle Park, NC, 2004; available at: https://www.epa.gov/emc/emc-conditional-test-methods (accessed 2017)
6 Youn, J.-S., Han, S., Jung, Y.-W., and Jeon, K.-J. (2017). Comparison of measurement methods and size fraction of fine particles(PM10, PM2.5) from stationary emission source using Korean standard and ISO: Coal power plant and refinery, Journal of Korean Society for Atmospheric Environment, 33(4), 342-350.   DOI
7 Woo, C. G., Hong, K.-J., Kim, H.-J., Kim, Y.-J., Han, B., An, J., Kang, S. J., and Chun, S.-N. (2017). Development and performance evaluation of the porous tube dilutor for real-time measurements of fine particles from high humidity environments, Particle and Aerosol Research, 13, 105-110.
8 Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Science, 36, 896-932.   DOI
9 Brockmann, J. E., Liu, B. Y. H., and McMurry, P. H. (1984). A Sample Extraction Diluter for Ultrafine Aerosol Sampling. Aerosol Science and Technology, 3, 441-451.   DOI
10 Burtscher, H., Baltensperger, U., Bukowiecki, N., Cohn, P., Huglin, C., Mohr, M., Matter, U., Nyeki, S., Schmatloch, V., Streit, N., and Weingartner, E. (2001). Separation of volatile and non-volatile aerosol fractions by thermodesorption: instrumental development and applications. Journal of Aerosol Science, 32, 427-442.   DOI
11 Desantes, J. M., Bermudez, V., Molina, S. and Linares, W. G. (2011). Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions. Measurement Science and Technology, 22, 115101.   DOI
12 Deuerling, C. F., Maguhn, J., Nordsieck, H. O., Warnecke, R., and Zimmermann, R. (2010). Measurement system for characterization of gas and particle phase of high temperature combustion aerosols, Aerosol Science and Technology, 44, 1-9   DOI
13 Kim, J. H., and Hwang, I. J. (2016). The characterization of PM, PM10, and PM2.5, from stationary sources, Journal of Korean Society for Atmospheric Environment, 32(6), 603-612.   DOI
14 Hildemann, L. M., Cass, G. R., and Markowski, G. R. (1989). A Dilution Stack Sampler for Collection of Organic Aerosol Emissions: Design, Characterization and Field Tests. Aerosol Science and Technology, 10, 193-204.   DOI
15 Hueglin, C., Scherrer, L., and Burtscher, H. (1997). An accurate, continuously adjustable dilution system (1:10 to 1:104) for submicron aerosols. Journal of Aerosol Science, 28, 1049-1055.   DOI
16 Jaiprakash, Habib, G., and Kumar, S. (2016). Evaluation of portable dilution system for aerosol measurement from stationary and mobile combustion sources. Aerosol Science and Technology, 50, 717-731.   DOI
17 Koch, W., Lodding, H. and Munzinger, F. (1988). Verdunnungsystem fur die Messung Hochkonzenrierter Aerosole mit optischen Partikelzahler. Staub-Reinhaltung der Luft, 48, 341-344.
18 Li, J., Qi, Z., Li, M., Wu, D., Zhou, C., Lu, S., Yan, J., and Li, X. (2017). Physical and Chemical Characteristics of Condensable Particulate Matter from an Ultralow-Emission Coal-Fired Power Plant. Energy & Fuels, 31, 1778-1785.   DOI
19 Leskinen, J., Joutsensaari, J., Lyyranen, J., Koivisto, J., Ruusunen, J., Jarvela, M., Tuomi, T., Hameri, K., Auvinen, A., and Jokiniemi, J. (2012). Comparison of nanoparticle measurement instruments for occupational health applications. Journal of Nanoparticle Research, 14(2), 1-16.
20 Li, X., Wang, S., Duan, L., Hao, J., and Long, Z. (2011). Design of a Compact Dilution Sampler for Stationary Combustion Sources. Journal of the Air & Waste Management Association, 61, 1124-1130.   DOI
21 Lighty, J. S., Veranth, J. M., and Sarofim, A. F. (2000). Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. Journal of the Air & Waste Management Association, 50, 1565-1618.   DOI
22 Lipsky, E., Stanier, C. O., Pandis, S. N., and Robinson, A. L. (2002). Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from a Pilot-Scale Pulverized-Coal Combustor. Energy & Fuels, 16, 302-310.   DOI
23 Lipsky, E. M., Pekney, N. J., Walbert, G. F., O'Dowd, W. J., Freeman, M. C., and Robinson, A. (2004). Effects of Dilution Sampling on Fine Particle Emissions from Pulverized Coal Combustion. Aerosol Science and Technology, 38, 574-587.   DOI
24 Lipsky, E. M. and Robinson, A. L. (2005). Design and Evaluation of a Portable Dilution Sampling System for Measuring Fine Particle Emissions. Aerosol Science and Technology, 39, 542-553.   DOI
25 Mikkanen, P., Kauppinen, E. I., Pyykonen, J., Jokiniemi, J. K., Aurela, M., Vakkilainen, E. K., and Janka, K. (1999). Alkali Salt Ash Formation in Four Finnish Industrial Recovery Boilers. Energy & Fuels, 13, 778-795.   DOI
26 Lyyranen, J., Jokiniemi, J., Kauppinen, E. I., and Joutsensaari, J. (1999). Aerosol characterisation in medium-speed diesel engines operating with heavy fuel oils. Journal of Aerosol Science, 30, 771-784.   DOI
27 Lyyrӓnen, J., Jokiniemi, J., Kauppinen, E. I., Backman, U., and Vesala, H. (2004). Comparison of Different Dilution Methods for Measuring Diesel Particle Emissions. Aerosol Science and Technology, 38, 12-23.   DOI
28 Maguhn, J., Karg, E., Kettrup, A., and Zimmermann, R. (2003). On-line Analysis of the Size Distribution of Fine and Ultrafine Aerosol Particles in Flue and Stack Gas of a Municipal Waste Incineration Plant: Effects of Dynamic Process Control Measures and Emission Reduction Devices. Environmental Science & Technology, 37, 4761-4770.   DOI
29 Mikkanen, P., Jokiniemi, J. K., Kauppinen, E. I., and Vakkilainen, E. K. (2001). Coarse ash particle characteristics in a pulp and paper industry chemical recovery boiler. Fuel, 80, 987-999.   DOI
30 Reda, A. A., Czech, H., Schnelle-Kreis, J., Sippula, O., Orasche, J., Weggler, B., Abbaszade, G., Arteaga-Salas, J. M., Kortelainen, M., Tissari, J., Jokiniemi, J., Streibel, T., and Zimmermann, R. (2015a). Analysis of Gas-Phase Carbonyl Compounds in Emissions from Modern Wood Combustion Appliances: Influence of Wood Type and Combustion Appliance. Energy & Fuels, 29, 3897-3907.   DOI