Browse > Article
http://dx.doi.org/10.12989/sss.2022.29.2.351

Synergistic effects of CNT and CB inclusion on the piezoresistive sensing behaviors of cementitious composites blended with fly ash  

Jang, Daeik (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Yoon, H.N. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Yang, Beomjoo (School of Civil Engineering, Chungbuk National University)
Seo, Joonho (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Farooq, Shah Z. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Lee, H.K. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Smart Structures and Systems / v.29, no.2, 2022 , pp. 351-359 More about this Journal
Abstract
The present study investigated the synergistic effects of carbon nanotube (CNT) and carbon black (CB) inclusions on the piezoresistive sensing behaviors of cementitious composites. Four different CNT and CB combinations were considered to form different conductive networks in the binder material composed of Portland cement and fly ash. The cement was substituted with fly ash at levels of 0 or 50% by the mass of binder. The specimens were cured up to 100 days to observe the variations of the electrical characteristics with hydration progress, and the piezoresistive sensing behaviors of the specimens were measured under cyclic loading tests. The fabricated specimens were additionally evaluated with flowability, resistivity and cyclic loading tests, and morphological analysis. The scanning electron microscopy and energy disperse X-ray spectroscopy test results indicated that CNT and CB inclusion induced synergistic formations of electrically conductive networks, which led to an improvement of piezoresistive sensing behaviors. Moreover, the incorporation of fly ash having Fe3+ components decreased the electrical resistivity, improving both the linearity of fractional changes in the electrical resistivity and reproducibility expressed as R2 under cyclic loading conditions.
Keywords
Carbon black (CB); Carbon nanotube (CNT); cementitious composites; fly ash; piezoresistive sensing behaviors;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Jang, D., Farooq, S.Z., Yoon, H.N. and Khalid, H.R. (2021d), "Design of a highly flexible and sensitive multi-functional polymeric sensor incorporating CNTs and carbonyl iron powder", Compos. Sci. Technol., 207, 108725. https://doi.org/10.1016/j.compscitech.2021.108725   DOI
2 Jin, F., Xiao, S., Lu, L. and Wang, Y. (2016), "Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries", Nano Lett., 16, 440-447. https://doi.org/10.1021/acs.nanolett.5b04105   DOI
3 Yoon, H.N., Jang, D., Lee, H.K. and Nam, I.W. (2020a), "Influence of carbon fiber additions on the electromagnetic wave shielding characteristics of CNT-cement composites", Constr. Build. Mater., 269, 121238. https://doi.org/10.1016/j.conbuildmat.2020.121238   DOI
4 Hannan, M.A., Hassan, K. and Jern, K.P. (2018), "A review on sensors and systems in structural health monitoring: current issues and challenges", Smart Struct. Syst., Int. J., 22(5), 509-525. https://doi.org/10.12989/sss.2018.22.5.509   DOI
5 Kim, G.M., Kim, Y.K., Kim, Y.J., Seo, J.H., Yang, B.J. and Lee, H.K. (2019a), "Enhancement of the modulus of compression of calcium silicate hydrates via covalent synthesis of CNT and silica fume", Constr. Build. Mater., 198, 218-225. https://doi.org/10.1016/j.conbuildmat.2018.11.161   DOI
6 Nam, I.W., Souri, H. and Lee, H.K. (2016), "Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites", Smart Struct. Syst., Int. J., 18(2), 217-231. https://doi.org/10.12989/sss.2016.18.2.217   DOI
7 Jang, D., Yoon, H.N., Farooq, S., Lee, H.K., and Nam, I.W. (2021c), "Influence of water ingress on the electrical properties and electromechanical sensing capabilities of CNT/cement composites", J. Build. Eng., 42, 103065. https://doi.org/10.1016/j.jobe.2021.103065   DOI
8 Zornoza, E., Catala, G., Jimenez, F., Andion, L.G. and Garces, P. (2010), "Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash", Mater. Constr., 60, 21-32. https://doi.org/10.3989/mc.2010.51009   DOI
9 Bae, S.J., Park, S. and Lee, H.K. (2020), "Role of Al in the crystal growth of alkali-activated fly ash and slag under a hydrothermal condition", Constr. Build. Mater., 239, 117842. https://doi.org/10.1016/j.conbuildmat.2019.117842   DOI
10 Jang, D.I., Yun, G.E., Park, J.E. and Kim, Y.K. (2018), "Designing an attachable and power-efficient all-in-one module of a tunable vibration absorber based on magnetorheological elastomer", Smart Mater. Struct., 27, 85009. https://doi.org/10.1088/1361-665X/aacdbd   DOI
11 Bilotti, E., Zhang, H., Deng, H., Zhang, R., Fu, Q. and Peijs, T. (2013), "Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tunable sensing behaviour", Compos. Sci. Technol., 74, 85-90. https://doi.org/10.1016/j.compscitech.2012.10.008   DOI
12 Nasr, D.E., Slika, W.G. and Saad, G.A. (2018), "Uncertainty quantification for structural health monitoring applications", Smart Struct. Syst., Int. J., 22(4), 399-411. https://doi.org/10.12989/sss.2018.22.4.399   DOI
13 Krishansamy, L. and Arumulla, R.M.R. (2018), "A hybrid structural health monitoring technique for detection of subtle structural damage", Smart Struct. Syst., Int. J., 22(5), 587-609. https://doi.org/10.12989/sss.2018.22.5.587   DOI
14 Monteiro, A.O., Cachim, P.B. and Costa, P.M.F.J. (2017), "Self-sensing piezoresistive cement composite loaded with carbon black particles", Cement Concrete Compos., 81, 59-65. https://doi.org/10.1016/j.cemconcomp.2017.04.009   DOI
15 Nam, I.W. and Lee, H.K. (2016), "Synergistic effect of MWNT/fly ash incorporation on the EMI shielding/absorbing characteristics of cementitious materials", Constr. Build. Mater., 115, 651-661. https://doi.org/10.1016/j.conbuildmat.2016.04.082   DOI
16 Park, J.E., Yun, G.E., Jang, D.I. and Kim, Y.K. (2019), "Analysis of electrical resistance and impedance change of magnetorheological gels with DC and AC voltage for magnetometer application", Sensors, 19, 2510. https://doi.org/10.3390/s19112510   DOI
17 Provis, J.L., Palomo, A. and Shi, C. (2015), "Advances in understanding alkali-activated materials", Cement Concrete Res., 78, 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013   DOI
18 Chung, D.D.L. (2012), "Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing", Carbon, 50(9), 3342-3353. https://doi.org/10.1016/j.carbon.2012.01.031   DOI
19 Kim, G.M., Naeem, F., Kim, H.K. and Lee, H.K. (2016), "Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites", Compos. Struct., 136, 162-170. https://doi.org/10.1016/j.compstruct.2015.10.010   DOI
20 Al-Dahawi, A., Ozturk, O., Emami, F., Yildirim, G. and Sahmaran, M. (2016), "Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials", Constr. Build. Mater., 104, 160-168. https://doi.org/10.1016/j.conbuildmat.2015.12.072   DOI
21 Kim, G.M., Yang, B.J., Yoon, H.N. and Lee, H.K. (2018b), "Synergistic effects of carbon nanotube and carbon fiber on heat generation and electrical characteristics of cementitious composites", Carbon, 134, 283-292. https://doi.org/10.1016/j.carbon.2018.03.070   DOI
22 Jang, D., Yoon, H.N., Seo, J., Lee, H.K. and Kim, G.M. (2021b), "Effects of silica aerogel inclusion on the stability of heat generation and heat-dependent electrical characteristics of cementitious composites with CNT", Cement Concrete Compos., 115, 103861. https://doi.org/10.1016/j.cemconcomp.2020.103861   DOI
23 Yoon, H.N., Seo, J., Kim, S., Lee, H.K. and Park, S. (2020b), "Characterization of blast furnace slag-blended Portland cement for immobilization of Co", Cement Concrete Res., 134, 106089. https://doi.org/10.1016/j.cemconres.2020.106089   DOI
24 Zeng, Q., Li, K., Fen-Chong, T. and Dangla, P. (2012), "Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes", Constr. Build. Mater., 27, 560-569. https://doi.org/10.1016/j.conbuildmat.2011.07.007   DOI
25 Ghafari, E., Ghahari, S.A., Costa, H., Julio, E., Portugal, A. and Duraes, L. (2016), "Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete", Constr. Build. Mater., 127, 43-48. https://doi.org/10.1016/j.conbuildmat.2016.09.123   DOI
26 Han, B., Zhang, L., Sun, S., Yu, X., Dong, X., Wu, T. and Ou, J. (2015), "Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality", Compos. Part A Appl. Sci. Manuf., 79, 103-115. https://doi.org/10.1016/j.compositesa.2015.09.016   DOI
27 Seo, J., Bae, S.J., Jang, D.I., Park, S., Yang, B. and Lee, H.K. (2020), "Thermal behavior of alkali-activated fly ash/slag with the addition of an aerogel as an aggregate replacement", Cement Concrete Compos., 106, 103462. https://doi.org/10.1016/j.cemconcomp.2019.103462   DOI
28 Kim, G.M., Nam, I.W., Yang, B., Yoon, H.N., Lee, H.K. and Park, S. (2019b), "Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art", Compos. Struct., 227, 111244. https://doi.org/10.1016/j.compstruct.2019.111244   DOI
29 Hanjitsuwan, S., Hunpratub S, Thongbai, P., Maensiri, S., Sata, V. and Chindaprasirt, P. (2014), "Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste", Cement Concrete Compos., 45, 9-14. https://doi.org/10.1016/j.cemconcomp.2013.09.012   DOI
30 Jang, D.I., Yoon, H.N., Nam, I.W. and Lee, H.K. (2020), "Effect of carbonyl iron powder incorporation on the piezoresistive sensing characteristics of CNT-based polymeric sensor", Compos. Struct., 244, 112260. https://doi.org/10.1016/j.compstruct.2020.112260   DOI
31 Khalid, H.R., Choudhry, I., Jang, D., Abbas, N., Haider, M.S. and Lee, H.K. (2021), "Facile Synthesis of Sprayed CNTs Layer-Embedded Stretchable Sensors with Controllable Sensitivity", Polymers (Basel), 13, 1-6. https://doi.org/10.3390/polym13020311   DOI
32 Kim, G.M., Yoon, H.N. and Lee, H.K. (2018c), "Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber", Constr. Build. Mater., 177, 428-435. https://doi.org/10.1016/j.conbuildmat.2018.05.127   DOI
33 Juenger, M.C.G. and Siddique, R. (2015), "Recent advances in understanding the role of supplementary cementitious materials in concrete", Cement Concrete Res., 78, 71-80. https://doi.org/10.1016/j.cemconres.2015.03.018   DOI
34 Kim, H.K., Nam, I.W. and Lee, H.K. (2014a), "Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume", Compos. Struct., 107, 60-69. https://doi.org/10.1016/j.compstruct.2013.07.042   DOI
35 Kim, H.K., Park, I.S. and Lee, H.K. (2014b), "Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water-binder ratio", Compos. Struct., 116, 713-719. https://doi.org/10.1016/j.compstruct.2014.06.007   DOI
36 Kim, G.M., Yang, B.J., Cho, K.J., Kim, E.M. and Lee, H.K. (2017), "Influences of CNT dispersion and pore characteristics on the electrical performance of cementitious composites", Compos. Struct., 164, 32-42. https://doi.org/10.1016/j.compstruct.2016.12.049   DOI
37 Kim, G.M., Nam, I.W., Yoon, H.N. and Lee, H.K. (2018a), "Effect of superplasticizer type and siliceous materials on the dispersion of carbon nanotube in cementitious composites", Compos. Struct., 185, 264-272. https://doi.org/10.1016/j.compstruct.2017.11.011   DOI
38 Kim, Y.K., Kim, J., Jang, D., Kim, S. and Jung, W. (2018d), "A study on the effects of multiwall carbon nanotubes on dynamic stiffness of hydrophilic-base magnetorheological gel", Curr. Nanosci., 15, 319-323. https://doi.org/10.2174/1573413714666181023144334   DOI
39 De Weerdt, K., Haha M, Ben., Le Saout, G., Kjellsen, K.O., Justnes, H., and Lothenbach, B. (2011), "Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash", Cement Concrete Res., 41, 279-291. https://doi.org/10.1016/j.cemconres.2010.11.014   DOI
40 Dai, Y., Sun, M., Liu, C. and Li, Z. (2010), "Electromagnetic wave absorbing characteristics of carbon black cement-based composites", Cement Concrete Compos., 32, 508-513. https://doi.org/10.1016/j.cemconcomp.2010.03.009   DOI
41 Gomis, J., Galao, O., Gomis, V., Zornoza, E. and Garces, P. (2015), "Self-heating and deicing conductive cement. Experimental study and modeling", Constr. Build. Mater., 75, 442-449. https://doi.org/10.1016/j.conbuildmat.2014.11.042   DOI
42 Han, B., Yu, X. and Kwon, E. (2009), "A self-sensing carbon nanotube/cement composite for traffic monitoring", Nanotechnology, 20, 445501. https://doi.org/10.1088/0957-4484/20/44/445501   DOI
43 Han, B., Zhang, L., Zhang, C., Wang, Y., Yu, X. and Ou, J. (2016), "Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials", Constr. Build. Mater., 125, 479-489. https://doi.org/10.1016/j.conbuildmat.2016.08.063   DOI
44 Hanjitsuwan, S., Chindaprasirt, P. and Pimraksa, K. (2011), "Electrical conductivity and dielectric property of fly ash geopolymer pastes", Int. J. Miner. Metall. Mater., 18, 94-99. https://doi.org/10.1007/s12613-011-0406-0   DOI
45 Wu, Z., Shi, C. and He, W. (2017), "Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes", Constr. Build. Mater., 136, 307-313. https://doi.org/10.1016/j.conbuildmat.2017.01.052   DOI
46 Jang, D., Yoon, H.N., Seo, J., Park, S., Kil, T. and Lee, H.K. (2021a), "Improved electric heating characteristics of CNT-embedded polymeric composites with an addition of silica aerogel", Compos. Sci. Technol., 212, 108866. https://doi.org/10.1016/j.compscitech.2021.108866   DOI
47 Jang, D., Yoon, H.N., Seo, J. and Yang, B. (2022), "Effects of exposure temperature on the piezoresistive sensing performances of MWCNT-embedded cementitious sensor", J. Build.. Eng., 47, 103816. https://doi.org/10.1016/j.jobe.2021.103816   DOI
48 Snellings, R., Chwast, J., Cizer, O., De Belie, N., Dhandapani, Y., Durdzinski, P., Elsen, J., Haufe, J., Hooton, D., Patapy, C. and Santhanam, M. (2018), "RILEM TC-238 SCM recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages", Mater. Struct. Constr., 51, 172. https://doi.org/10.1617/s11527-018-1298-5   DOI
49 Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527   DOI
50 Ubertini, F., Laflamme, S., Ceylan, H., Materazzi, A.L., Cerni, G., Saleem, H., D'Alessandro, A. and Corradini, A. (2014), "Novel nanocomposite technologies for dynamic monitoring of structures: A comparison between cement-based embeddable and soft elastomeric surface sensors", Smart Mater. Struct., 23. https://doi.org/10.1088/0964-1726/23/4/045023   DOI
51 Xiao, L. and Li, Z. (2008), "Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement" Cement Concrete Res., 38, 312-319. https://doi.org/10.1016/j.cemconres.2007.09.027   DOI
52 Xie, N., Shi, X., Feng, D., Kuang, B. and Li, H. (2012), "Percolation backbone structure analysis in electrically conductive carbon fiber reinforced cement composites", Compos. Part B Eng., 43, 3270-3275. https://doi.org/10.1016/j.compositesb.2012.02.032   DOI