Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.5.711

Predicting the concrete compressive strength through MLP network hybridized with three evolutionary algorithms  

Geng, Xin (School of Computer and Communication Engineering, Zhengzhou University of Light Industry)
Moayedi, Hossein (Department for Management of Science and Technology Development, Ton Duc Thang University)
Pan, Feifei (Zhengzhou Electromechanical Engineering Research Institute)
Foong, Loke Kok (Institute of Research and Development, Duy Tan University)
Publication Information
Smart Structures and Systems / v.28, no.5, 2021 , pp. 711-725 More about this Journal
Abstract
In this research, we synthesized an artificial neural network (ANN) with three metaheuristic algorithms, namely particle swarm optimization (PSO) algorithm, imperialist competition algorithm (ICA), and genetic algorithm (GA) to achieve a more accurate prediction of 28-day compressive strength of concrete. Seven input parameters (including cement, water, slag, fly ash, superplasticizer (SP), coarse aggregate (CA), and fine aggregate (FA)) were considered for this work. 80% of data (82 samples) were used to feed ANN, PSO-ANN, ICA-ANN, and GA-ANN models, and their performance was evaluated using the remaining 20% (21 samples). Referring to the executed sensitivity analysis, the best complexities for the PSO and GA were indicated by the population size = 450 and for the ICA by the population size = 400. Also, to assess the accuracy of the used predictors, the accuracy criteria of root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE) were defined. Based on the results, applying the PSO, ICA, and GA algorithms led to increasing R2 in the training and testing phase. Also, the MAE and RMSE of the conventional MLP experienced significant decrease after the hybridization process. Overall, the efficiency of metaheuristic science for the mentioned objective was deduced in this research. However, the combination of ANN and ICA enjoys the highest accuracy and could be a robust alternative to destructive and time-consuming tests.
Keywords
ANN; artificial intelligence; concrete compressive strength; evolutionary algorithms;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Xia, J., Chen, H., Li, Q., Zhou, M., Chen, L., Cai, Z., Fang, Y. and Zhou, H. (2017), "Ultrasound-based differentiation of malignant and benign thyroid Nodules: An extreme learning machine approach", Comput. Methods Programs Biomed., 147, 37-49. https://doi.org/10.1016/j.cmpb.2017.06.005   DOI
2 Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S. and Zhang, X. (2019), "Enhanced Moth-flame optimizer with mutation strategy for global optimization", Inform. Sci., 492, 181-203. https://doi.org/10.1016/j.ins.2019.04.022   DOI
3 Yeh, I.C. (2007), "Modeling slump flow of concrete using second-order regressions and artificial neural networks", Cement Concrete Compos., 29(6), 474-480. https://doi.org/10.1016/j.cemconcomp.2007.02.001   DOI
4 Yu, H., Li, W., Chen, C., Liang, J., Gui, W., Wang, M. and Chen, H. (2020), "Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01174-w   DOI
5 Salari, N., Shohaimi, S., Najafi, F., Nallappan, M. and Karishnarajah, I. (2014), "A novel hybrid classification model of genetic algorithms, modified k-nearest neighbor and developed backpropagation neural network", PLoS One, 9(11). https://doi.org/10.1371/journal.pone.0112987   DOI
6 Zuo, C., Chen, Q., Tian, L., Waller, L. and Asundi, A. (2015), "Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective", Optics Lasers in Eng., 71, 20-32. https://doi.org/10.1016/j.optlaseng.2015.03.006   DOI
7 Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A. and Chen, Q. (2017), "High-resolution transport-of-intensity quantitative phase microscopy with annular illumination", Scientif. Reports, 7(1), 7654. https://doi.org/10.1038/s41598-017-06837-1   DOI
8 Zhang, W., Hu, Y., Liu, J., Wang, H., Wei, J., Sun, P., Wu, L. and Zheng, H. (2020c), "Progress of ethylene action mechanism and its application on plant type formation in crops", Saudi J. Biol. Sci., 27(6), 1667-1673. https://doi.org/10.1016/j.sjbs.2019.12.038   DOI
9 Zhao, C. and Li, J. (2020), "Equilibrium selection under the Bayes-based strategy updating rules", Symmetry, 12(5), 739. https://doi.org/10.3390/sym12050739   DOI
10 Zhao, D., Liu, L., Yu, F., Heidari, A.A., Wang, M., Liang, G., Muhammad, K. and Chen, H. (2020a), "Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy", Knowled.-Based Syst., 216, 106510. https://doi.org/10.1016/j.knosys.2020.106510   DOI
11 Zuo, X., Dong, M., Gao, F. and Tian, S. (2020), "The modeling of the electric heating and cooling system of the integrated energy system in the coastal area", J. Coastal Res., 103(SI), 1022-1029. https://doi.org/10.2112/SI103-213.1   DOI
12 Henigal, A., Elbeltgai, E., Eldwiny, M. and Serry, M. (2016), "Artificial neural network model for forecasting concrete compressive strength and slump in Egypt", J. Al Azhar Univ. Eng. Sector, 11(39), 435-446. https://doi.org/10.21608/AUEJ.2016.19445   DOI
13 Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001   DOI
14 Shan, W., Qiao, Z., Heidari, A.A., Chen, H., Turabieh, H. and Teng, Y. (2020), "Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis", Knowled.-Based Syst., 214, 106728. https://doi.org/10.1016/j.knosys.2020.106728   DOI
15 Yang, Y., Li, Y., Yao, J., Iglauer, S., Luquot, L., Zhang, K., Sun, H., Zhang, L., Song, W. and Wang, Z. (2020), "Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure", Water Resour. Res., 56(4), e2019WR026112. https://doi.org/10.1029/2019WR026112   DOI
16 Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z. and Gandomi, A.H. (2020), "Multi-population differential evolutionassisted Harris hawks optimization: Framework and case studies", Future Gener. Comput. Syst., 111, 175-198. https://doi.org/10.1016/j.future.2020.04.008   DOI
17 Chithra, S., Kumar, S.S., Chinnaraju, K. and Ashmita, F.A. (2016), "A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks", Constr. Build. Mater., 114, 528-535. https://doi.org/10.1016/j.conbuildmat.2016.03.214   DOI
18 Cigizoglu, H.K. and Kisi, O. (2005), "Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data", Hydrol. Res., 36(1), 49-64. https://doi.org/10.2166/nh.2005.0005   DOI
19 Hashemian, A.H., Manochehri, S., Afshari, D., Manochehri, Z., Salari, N. and Shahsavari, S. (2019), "Prognosis of multiple sclerosis disease using data mining approaches random forest and support vector machine based on genetic algorithm", Tehran Univ. Medical J., 77(1), 33-40.
20 Hecht-Nielsen, R. (1992), Neural Networks for Perception, Elsevier, pp. 65-93.
21 Holland, J.H. (1992), "Genetic algorithms", Scientif. Am., 267(1), 66-73.   DOI
22 Hong, X.C., Wang, G.Y., Liu, J., Song, L. and Wu, E.T. (2021), "Modeling the impact of soundscape drivers on perceived birdsongs in urban forests", J. Cleaner Product., 292, 125315. https://doi.org/10.1016/j.jclepro.2020.125315   DOI
23 Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8   DOI
24 Ines, A.V. and Droogers, P. (2002), "Inverse modelling in estimating soil hydraulic functions: A genetic algorithm approach", Hydrol. Earth Syst. Sci. Discuss., 6(1), 49-66. https://doi.org/10.5194/hess-6-49-2002   DOI
25 Khabbazi, A., Atashpaz-Gargari, E. and Lucas, C. (2009), "Imperialist competitive algorithm for minimum bit error rate beamforming", Int. J. Bio-Inspired Computat., 1(1-2), 125-133. https://doi.org/10.1504/IJBIC.2009.022781   DOI
26 Li, A., Fang, Q., Zhang, D., Luo, J. and Hong, X. (2018a), "Blast vibration of a large-span high-speed railway tunnel based on microseismic monitoring", Smart Struct. Syst., Int. J., 21(5), 561-569. https://doi.org/10.12989/sss.2018.21.5.561   DOI
27 Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Computat. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009   DOI
28 Sun, M., Hou, B., Wang, S., Zhao, Q., Zhang, L., Song, L. and Zhang, H. (2021), "Effects of NaClO shock on MBR performance under continuous operating conditions", Environ. Sci.: Water Res. Technol., 7(2), 396-404. DOI https://doi.org/10.1039/D0EW00760A   DOI
29 Thirumalai, C., Chandhini, S.A. and Vaishnavi, M. (2017), "Analysing the concrete compressive strength using Pearson and Spearman", Proceedings of 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, April, pp. 215-218. https://doi.org/10.1109/ICECA.2017.8212799   DOI
30 Tien Bui, D., Abdullahi, M.A.M., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 37(1), 701-712. https://doi.org/10.1007/s00366-019-00850-w   DOI
31 Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H. and Tong, C. (2017), "Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses", Neurocomputing, 267, 69-84. https://doi.org/10.1016/j.neucom.2017.04.060   DOI
32 Xu, X. and Chen, H.L. (2014), "Adaptive computational chemotaxis based on field in bacterial foraging optimization", Soft Comput., 18(4), 797-807. https://doi.org/10.1007/s00500-013-1089-4   DOI
33 Galan, A. (1967), "Estimate of concrete strength by ultrasonic pulse velocity and damping constant", Journal Proceedings, 64(10), 678-684.
34 Clerc, M. and Kennedy, J. (2002), "The particle swarm-explosion, stability, and convergence in a multidimensional complex space", IEEE Transact. Evolut. Computat., 6(1), 58-73. https://doi.org/10.1109/4235.985692   DOI
35 Cybenko, G. (1989), "Approximation by superpositions of a sigmoidal function", Mathe. Control Signals Syst., 2(4), 303-314. https://doi.org/10.1007/BF02551274   DOI
36 Fallahian, M., Khoshnoudian, F. and Talaei, S. (2018), "Application of couple sparse coding ensemble on structural damage detection", Smart Struct. Syst., Int. J., 21(1), 1-14. https://doi.org/10.12989/sss.2018.21.1.001   DOI
37 Chahnasir, E.S., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamad, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., Int. J., 22(4), 413-424. https://doi.org/10.12989/sss.2018.22.4.413   DOI
38 Hu, L., Hong, G., Ma, J., Wang, X. and Chen, H. (2015), "An efficient machine learning approach for diagnosis of paraquat-poisoned patients", Comput. Biol. Medicine, 59, 116-124. https://doi.org/10.1016/j.compbiomed.2015.02.003   DOI
39 Nourani, V., Pradhan, B., Ghaffari, H. and Sharifi, S.S. (2014), "Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models", Natural Hazards, 71(1), 523-547. https://doi.org/10.1007/s11069-013-0932-3   DOI
40 Chen, H.L., Wang, G., Ma, C., Cai, Z.N., Liu, W.B. and Wang, S.J. (2016), "An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease", Neurocomputing, 184, 131-144. https://doi.org/10.1016/j.neucom.2015.07.138   DOI
41 Liu, J., Liu, Y. and Wang, X. (2020a), "An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou", Environ. Sci. Pollut. Res., 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5   DOI
42 Poli, R., Kennedy, J. and Blackwell, T. (2007), "Particle swarm optimization", Swarm Intell., 1(1), 33-57. https://doi.org/10.1007/s11721-007-0002-0   DOI
43 Qi, C., Fourie, A. and Chen, Q. (2018), "Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill", Constr. Build. Mater., 159, 473-478. https://doi.org/10.1016/j.conbuildmat.2017.11.006   DOI
44 Qiao, W., Wang, Y., Zhang, J., Tian, W., Tian, Y. and Yang, Q. (2021), "An innovative coupled model in view of wavelet transform for predicting short-term PM10 concentration", J. Environ. Manag., 289, 112438. https://doi.org/10.1016/j.jenvman.2021.112438   DOI
45 Zhang, L., Zheng, J., Tian, S., Zhang, H., Guan, X., Zhu, S., Zhang, X., Bai, Y., Xu, P., Zhang, J. and Li, Z. (2020a), "Effects of Al3+ on the microstructure and bioflocculation of anoxic sludge", J. Environ. Sci., 91, 212-221. https://doi.org/10.1016/j.jes.2020.02.010   DOI
46 Han, S.H., Kim, J.K. and Park, Y.D. (2003), "Prediction of compressive strength of fly ash concrete by new apparent activation energy function", Cement Concrete Res., 33(7), 965-971. https://doi.org/10.1016/S0008-8846(03)00007-3   DOI
47 Gao, N., Wang, B., Lu, K. and Hou, H. (2021), "Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure", Appl. Acoust., 177, 107906. https://doi.org/10.1016/j.apacoust.2020.107906   DOI
48 Gargari, E.A., Hashemzadeh, F., Rajabioun, R. and Lucas, C. (2008), "Colonial competitive algorithm: a novel approach for PID controller design in MIMO distillation column process", Int. J. Intell. Comput. Cybernet., 1(3), 337-355. https://doi.org/10.1108/17563780810893446   DOI
49 Liu, J., Yi, Y. and Wang, X. (2020b), "Exploring factors influencing construction waste reduction: A structural equation modeling approach", J. Cleaner Product., 276, 123185. https://doi.org/10.1016/j.jclepro.2020.123185   DOI
50 Liu, M., Xue, Z., Zhang, H. and Li, Y. (2021), "Dual-channel membrane capacitive deionization based on asymmetric ion adsorption for continuous water desalination", Electrochem. Commun., 125, 106974. https://doi.org/10.1016/j.elecom.2021.106974   DOI
51 Marquardt, D.W. (1963), "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Indust. Appl. Mathe., 11(2), 431-441. https://doi.org/10.1137/0111030   DOI
52 McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Mathe. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259   DOI
53 Moayedi, H. and Armaghani, D.J. (2018), "Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil", Eng. Comput., 34(2), 347-356. https://doi.org/10.1007/s00366-017-0545-7   DOI
54 Salari, N., Shohaimi, S., Najafi, F., Nallappan, M. and Karishnarajah, I. (2012), "An improved artificial neural network based model for prediction of late onset heart failure", Life Sci. J., 9(4), 3684-3689.
55 Mahzan, S., Staszewski, W.J. and Worden, K. (2010), "Experimental studies on impact damage location in composite aerospace structures using genetic algorithms and neural networks", Smart Struct. Syst., Int. J., 6(2), 147-165. https://doi.org/10.12989/sss.2010.6.2.147   DOI
56 Moayedi, H., Abdullahi, M.A.M., Nguyen, H. and Rashid, A.S.A. (2019b), "Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils", Eng. Comput., 37(1), 437-447. https://doi.org/10.1007/s00366-019-00834-w   DOI
57 Onat, O. and Gul, M. (2018), "Application of Artificial Neural Networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart Struct. Syst., Int. J., 21(4), 521-535. https://doi.org/10.12989/sss.2018.21.4.521   DOI
58 Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B. and Liu, D. (2016), "Evolving support vector machines using fruit fly optimization for medical data classification", Knowled.-Based Syst., 96, 61-75. https://doi.org/10.1016/j.knosys.2016.01.002   DOI
59 Zhang, M., Zhang, L., Tian, S., Zhang, X., Guo, J., Guan, X. and Xu, P. (2020b), "Effects of graphite particles/Fe3+ on the properties of anoxic activated sludge", Chemosphere, 253, 126638. https://doi.org/10.1016/j.chemosphere.2020.126638   DOI
60 Hu, J., Chen, H., Heidari, A.A., Wang, M., Zhang, X., Chen, Y. and Pan, Z. (2020), "Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection", Knowledge-Based Systems, 213, 106684. https://doi.org/10.1016/j.knosys.2020.106684   DOI
61 Wang, M. and Chen, H. (2020), "Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis", Appl. Soft Comput., 88, 105946. https://doi.org/10.1016/j.asoc.2019.105946   DOI
62 Kennedy, J. (2010), "Particle swarm optimization", In: Encyclopedia of Machine Learning, Springer, pp. 760-766.
63 Li, C., Hou, L., Sharma, B.Y., Li, H., Chen, C., Li, Y., Zhao, X., Huang, H., Cai, Z. and Chen, H. (2018b), "Developing a new intelligent system for the diagnosis of tuberculous pleural effusion", Comput. Methods Programs Biomed., 153, 211-225. https://doi.org/10.1016/j.cmpb.2017.10.022   DOI
64 Tu, J., Chen, H., Liu, J., Heidari, A.A., Zhang, X., Wang, M., Ruby, R. and Pham, Q.V. (2021), "Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance", Knowled.-Based Syst., 212, 106642. https://doi.org/10.1016/j.knosys.2020.106642   DOI
65 Whitley, D. (1994), "A genetic algorithm tutorial", Statist. Comput., 4(2), 65-85. https://doi.org/10.1007/BF00175354   DOI
66 Zhao, X., Zhang, X., Cai, Z., Tian, X., Wang, X., Huang, Y., Chen, H. and Hu, L. (2019), "Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients", Computat. Biol. Chem., 78, 481-490. https://doi.org/10.1016/j.compbiolchem.2018.11.017   DOI
67 Saeidian, B., Mesgari, M.S. and Ghodousi, M. (2016), "Evaluation and comparison of Genetic Algorithm and Bees Algorithm for location-allocation of earthquake relief centers", Int. J. Disaster Risk Reduct., 15, 94-107. https://doi.org/10.1016/j.ijdrr.2016.01.002   DOI
68 Zhang, Y., Liu, R., Heidari, A.A., Wang, X., Chen, Y., Wang, M. and Chen, H. (2020d), "Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis", Neurocomputing, 430, 185-212. https://doi.org/10.1016/j.neucom.2020.1010.1038   DOI
69 Zhang, Y., Liu, R., Wang, X., Chen, H. and Li, C. (2020e), "Boosted binary Harris hawks optimizer and feature selection", Eng. Comput., 25, 26. https://doi.org/10.1007/s00366-020-01028-5   DOI
70 Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y. and Chen, H. (2014), "Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton", Appl. Soft Comput., 24, 585-596. https://doi.org/10.1016/j.asoc.2014.07.024   DOI
71 Zhao, X., Gu, B., Gao, F. and Chen, S. (2020b), "Matching model of energy supply and demand of the integrated energy system in coastal areas", J. Coastal Res., 103(SI), 983-989. https://doi.org/10.2112/SI103-205.1   DOI
72 Zheng, J., Zhang, C. and Li, A. (2020), "Experimental investigation on the mechanical properties of curved metallic plate dampers", Appl. Sci., 10(1), 269. https://doi.org/10.3390/app10010269   DOI
73 Atashpaz-Gargari, E. and Lucas, C. (2007), "Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition", 2007 IEEE Congress on Evolutionary Computation, Singapore, September, pp. 4661-4667. https://doi.org/10.1109/CEC.2007.4425083   DOI
74 Abdalhmid, J.M., Ashour, A.F. and Sheehan, T. (2019), "Long-term drying shrinkage of self-compacting concrete: Experimental and analytical investigations", Constr. Build. Mater., 202, 825-837. https://doi.org/10.1016/j.conbuildmat.2018.12.152   DOI
75 Akin, O. and Sahin, M. (2017), "Active neuro-adaptive vibration suppression of a smart beam", Smart Struct. Syst., Int. J., 20(6), 657-668. https://doi.org/10.12989/sss.2017.20.6.657   DOI
76 Anderson, J.A. (1995), An Introduction to Neural Networks, MIT Press.
77 Boga, A.R., Ozturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B: Eng., 45(1), 688-696. https://doi.org/10.1016/j.compositesb.2012.05.054   DOI
78 Han, C., Zhang, B., Chen, H., Wei, Z. and Liu, Y. (2019), "Spatially distributed crop model based on remote sensing", Agricult. Water Manag., 218, 165-173. https://doi.org/10.1016/j.agwat.2019.03.035   DOI
79 Ghiasi, R. and Ghasemi, M.R. (2018), "Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study", Smart Struct. Syst., Int. J., 22(5), 561-574. https://doi.org/10.12989/sss.2018.22.5.561   DOI
80 Hakim, S.J.S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks - a review", Smart Struct. Syst., Int. J., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159   DOI
81 Moayedi, H., Mehrabi, M., Kalantar, B., Abdullahi Mu'azu, M., A. Rashid, A.S., Foong, L.K. and Nguyen, H. (2019a), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide", Geomat. Natural Hazards Risk, 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126   DOI
82 Moayedi, H., Raftari, M., Sharifi, A., Jusoh, W.A.W. and Rashid, A.S.A. (2019c), "Optimization of ANFIS with GA and PSO estimating α ratio in driven piles", Eng. Comput., 1-12. 10.1007/s00366-018-00694-w   DOI
83 Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B. and Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Environ. Manag., 260, 109867. https://doi.org/10.1016/j.jenvman.2019.109867   DOI
84 Nehdi, M., El Chabib, H. and Said, A. (2006), "Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks", Smart Struct. Syst., Int. J., 2(1), 81-100. https://doi.org/10.12989/sss.2006.2.1.081   DOI
85 Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054   DOI
86 Popovics, S. (1990), "Analysis of concrete strength versus water-cement ratio relationship", Mater. J., 87(5), 517-529.
87 Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomat. Natural Hazards Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782   DOI
88 Nikoo, M., Torabian Moghadam, F. and Sadowski, L. (2015a), "Prediction of concrete compressive strength by evolutionary artificial neural networks", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2015/849126   DOI
89 Nikoo, M., Zarfam, P. and Sayahpour, H. (2015b), "Determination of compressive strength of concrete using Self Organization Feature Map (SOFM)", Eng. Comput., 31(1), 113-121. https://doi.org/10.1007/s00366-013-0334-x   DOI
90 Oluokun, F.A. (1994), "Fly ash concrete mix design and the water-cement ratio law", Mater. J., 91(4), 362-371. https://doi.org/10.1007/BF02472668   DOI
91 Park, K., Kim, S. and Torbol, M. (2016), "Operational modal analysis of reinforced concrete bridges using autoregressive model", Smart Struct. Syst., Int. J., 17(6), 1017-1030. https://doi.org/10.12989/sss.2016.17.6.1017   DOI