Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.5.631

Numerical and experimental research on actuator forces in toggled active vibration control system (Part II: Experimental)  

Mirfakhraei, Sayyed Farhad (Department of Civil Engineering, Seraj University)
Ahmadi, Hamid Reza (Department of Civil Engineering, Faculty of Engineering, University of Maragheh)
Chan, Ricky (Department of Civil and Infrastructural Engineering, Faculty of Civil Engineering, RMIT University)
Publication Information
Smart Structures and Systems / v.28, no.5, 2021 , pp. 631-642 More about this Journal
Abstract
In this research, new toggled actuator forces were proposed. For this purpose, numerical and experimental investigation of the installation of the actuator in a toggle configuration for the decreasing of active control forces in engineering structures has been carried out. In the first part, numerical studies were investigated. In addition to numerical research on the effects of the toggle configuration on actuator forces, an experimental investigation has been carried out by building a table model of the mentioned system. The algorithm of the system is LQR, and ATmega328 has been used as a control platform. Comparing results through the experimental and numerical processes express high matching that relies on mitigating control forces in the toggled active model. Based on the results, a significant reduction in actuator forces through using the proposed toggle configuration.
Keywords
control forces; experimental investigation; structural active vibration control; toggled actuator;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Hasni, H., Alavi, A.H., Jiao, P. and Lajnef, N. (2017), "Detection of fatigue cracking in steel bridge girders: a support vector machine approach", Arch. Civil Mech. Eng., 17(3), 609-622. https://doi.org/10.1016/j.acme.2016.11.005   DOI
2 Bayat, M., Bayat, M., Kia, M., Ahmadi, H.R. and Pakar, I. (2018), "Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach", Geomech. Eng., Int. J., 16(4), 355-361. https://doi.org/10.12989/gae.2018.16.4.355   DOI
3 Bayat, M., Kia, M., Soltangharaei, V., Ahmadi, H.R. and Ziehl, P. (2020b), "Bayesian demand model based seismic vulnerability assessment of a concrete girder bridge", Adv. Concrete Constr., Int. J., 9(4), 337-343. https://doi.org/10.12989/acc.2020.9.4.337   DOI
4 Braz-Cesar, M.T. and Barros, R. (2018), "Semi-active fuzzy based control system for vibration reduction of a sdof structure under seismic excitation", Smart Struct. Syst., Int. J., 21(4), 389-395. https://doi.org/10.12989/sss.2018.21.4.389   DOI
5 Chopra, A.K. (2017), Dynamics of Structures. Theory and Applications to Earthquake Engineering, Prentice-hall International Series, NY, USA.
6 De Domenico, D. and Ricciardi, G. (2018), "Earthquake protection of existing structures with limited seismic joint: base isolation with supplemental damping versus rotational inertia", Adv. Civil Eng., 2018, 6019495. https://doi.org/10.1155/2018/6019495   DOI
7 Fu, F. (2018), Design and Analysis of Tall and Complex Structures, Butterworth-Heinemann, Oxford, UK.
8 Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao, J.T. (1997), "Structural control: past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)   DOI
9 Hwang, J.S., Huang, Y.N. and Hung, Y.H. (2005), "Analytical and experimental study of toggle-brace-damper systems", J. Struct. Eng., 131(7), 1035-1043. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:7(1035)   DOI
10 Ikeda, Y., Sasaki, K., Sakamoto, M. and Kobori, T. (2001), "Active mass driver system as the first application of active structural control", Earthq. Eng. Struct. Dyn., 30(11), 1575-1595. https://doi.org/10.1002/eqe.82   DOI
11 Liu, D.K., Yang, Y.L. and Li, Q.S. (2003), "Optimum positioning of actuators in tall buildings using genetic algorithm", Comput. Struct., 81(32), 2823-2827. https://doi.org/10.1016/j.compstruc.2003.07.002   DOI
12 Majeed, A.P.A. Taha, Z. Abdullah, M.A. Azmi, K.Z.M. and Zakaria, M.A. (2018), "The control of an upper extremity exoskeleton for stroke rehabilitation: An active force control scheme approach", Adv. Robot. Res., Int. J., 2(3), 237-245. https://doi.org/10.12989/arr.2018.2.3.237   DOI
13 Shokouhian, M., Shi, Y. and Head, M. (2016), "Interactive buckling failure modes of hybrid steel flexural members", Eng. Struct., 125, 153-166. https://doi.org/10.1016/j.engstruct.2016.07.001   DOI
14 Pantelides, C.P. and Cheng, F.Y. (1990), "Optimal placement of controllers for seismic structures", Eng. Struct., 12(4), 254-262. https://doi.org/10.1016/0141-0296(90)90024-M   DOI
15 Reinhorn, A.M., Viti, S. and Cimellaro, G. (2005), "Retrofit of structures: Strength reduction with damping enhancement", Proceedings of the 37th UJNR Panel Meeting on Wind and Seismic Effects.
16 Ricciardelli, F., Pizzimenti, A.D. and Mattei, M. (2003), "Passive and active mass damper control of the response of tall buildings to wind gustiness", Eng. Struct., 25(9), 1199-1209. https://doi.org/10.1016/S0141-0296(03)00068-3   DOI
17 Sigaher, A.N. and Constantinou, M.C. (2003), "Scissor-jack-damper energy dissipation system", Earthq. Spectra, 19(1), 133-158. https://doi.org/10.1193/1.1540999   DOI
18 Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, John Wiley & Sons.
19 Council, B.S.S. (2000), Prestandard and commentary for the seismic rehabilitation of buildings, Report FEMA-356, Washington, DC, USA.
20 Kareem, A., Kijewski, T. and Tamura, Y. (1999), "Mitigation of motions of tall buildings with specific examples of recent applications", Wind Struct., Int. J., 2(3), 201-251. https://doi.org/10.12989/was.1999.2.3.201   DOI
21 Dinh, V.N., Basu, B. and Nagarajaiah, S. (2016), "Semi-active control of vibrations of spar type floating offshore wind turbines", Smart Struct. Syst., Int. J., 18(4), 683-705. https://doi.org/10.12989/sss.2016.18.4.683   DOI
22 Fisco, N.R. and Adeli, H. (2011), "Smart structures: part I-active and semi-active control", Scientia Iranica, 18(3), 275-284. https://doi.org/10.1016/j.scient.2011.05.034   DOI
23 Gandomi, A.H., Alavi, A.H. and Yun, G.J. (2011), "Nonlinear modeling of shear strength of SFRC beams using linear genetic programming", Struct. Eng. Mech., Int. J., 38(1), 1-25. https://doi.org/10.12989/sem.2011.38.1.001   DOI
24 Gharebaghi, S.A. and Zangooei, E. (2017), "Chaotic particle swarm optimization in optimal active control of shear buildings", Struct. Eng. Mech., Int. J., 61(3), 347-357. https://doi.org/10.12989/sem.2017.61.3.347   DOI
25 Hejazi, F., Shoaei, M.D., Tousi, A. and Jaafar, M.S. (2016), "Analytical model for viscous wall dampers", Comput.-Aided Civil Infrastruct. Eng., 31(5), 381-399. https://doi.org/10.1111/mice.12161   DOI
26 Xu, H.B., Zhang, C.W., Li, H., Tan, P., Ou, J.P. and Zhou, F.L. (2014), "Active mass driver control system for suppressing wind-induced vibration of the Canton Tower", Smart Struct. Syst., Int. J., 13(2), 281-303. https://doi.org/10.12989/sss.2014.13.2.281   DOI
27 Park, W., Park, K.S., Koh, H.M. and Ha, D.H. (2006), "Wind-induced response control and serviceability improvement of an air traffic control tower", Eng. Struct., 28(7), 1060-1070. https://doi.org/10.1016/j.engstruct.2005.11.013   DOI
28 Muthalif, A.G., Kasemi, H.B., Nordin, N.H., Rashid, M.M. and Razali, M.K.M. (2017), "Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller", Smart Struct. Syst., Int. J., 20(1), 85-97. https://doi.org/10.12989/sss.2017.20.1.085   DOI
29 Spencer, B.F. and Sain, M.K. (1997), "Controlling buildings: a new frontier in feedback", IEEE Control Systems, 17(6), 19-35. https://doi.org/10.1109/37.642972   DOI
30 Tian, Z., Mokrani, B., Alaluf, D., Jiang, J. and Preumont, A. (2017), "Active tendon control of suspension bridges: Study on the active cables configuration", Smart Struct. Syst., Int. J., 19(5), 463-472. https://doi.org/10.12989/sss.2017.19.5.463   DOI
31 Yang, J.N. and Soong, T.T. (1988), "Recent advances in active control of civil engineering structures", Probabilistic Eng. Mech., 3(4), 179-188. https://doi.org/10.1016/0266-8920(88)90010-0   DOI
32 Soong, T.T. and Spencer Jr, B.F. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X   DOI
33 Spencer Jr, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)   DOI
34 Park, W., Park, K.S. and Koh, H.M. (2008), "Active control of large structures using a bilinear pole-shifting transform with H control method", Eng. Struct., 30(11), 3336-3344. https://doi.org/10.1016/j.engstruct.2008.05.009   DOI
35 He, J., Xu, Y.L., Zhang, C.D. and Zhang, X.H. (2015), "Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors", Smart Struct. Syst., Int. J.,16(6), 981-1002. https://doi.org/10.12989/sss.2015.16.6.981   DOI
36 Cheng, F.Y. (1988), "Response control based on structural optimization and its combination with active protection", Proceedings of the World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan.
37 Rao, A.R.M. and Sivasubramanian, K. (2008), "Optimal placement of actuators for active vibration control of seismic excited tall buildings using a multiple start guided neighbourhood search (MSGNS) algorithm", J. Sound Vib., 311(1-2), 133-159. https://doi.org/10.1016/j.jsv.2007.08.031   DOI
38 Abe, M. and Fujino, Y. (1994), "Dynamic characterization of multiple tuned mass dampers and some design formulas", Earthq. Eng. Struct. Dyn., 23(8), 813-835. https://doi.org/10.1002/eqe.4290230802   DOI
39 Ahmadi, H.R., Daneshjoo, F. and Khaji, N. (2015), "New damage indices and algorithm based on square time-frequency distribution for damage detection in concrete piers of railroad bridges", Struct. Control Health Monitor., 22(1), 91-106. https://doi.org/10.1002/stc.1662   DOI
40 Alkayem, N.F., Cao, M. and Ragulskis, M. (2019), "Damage localization in irregular shape structures using intelligent FE model updating approach with a new hybrid objective function and social swarm algorithm", Appl. Soft Comput., 83, 105604. https://doi.org/10.1016/j.asoc.2019.105604   DOI
41 Taylor, D.P. (1999a), U.S. Patent No. 5,870,863. Washington, DC: U.S. Patent and Trademark Office.
42 Taylor, D.P. (1999b), U.S. Patent No. 5,934,028. Washington, DC: U.S. Patent and Trademark Office.
43 Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Software, 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005   DOI
44 Xu, Y.L. and Teng, J. (2002), "Optimum design of active/passive control devices for tall buildings under earthquake excitation", Struct. Des. Tall Build., 11(2), 109-127. https://doi.org/10.1002/tal.193   DOI
45 Yamamoto, M., Aizawa, S., Higashino, M. and Toyama, K. (2001), "Practical applications of active mass dampers with hydraulic actuator", Earthq. Eng. Struct. Dyn., 30(11), 1697-1717. https://doi.org/10.1002/eqe.88   DOI
46 Ahmadi, H.R. and Anvari, D. (2018a), "Health monitoring of pedestrian truss bridges using cone-shaped kernel distribution", Smart Struct. Syst., Int. J., 22(6), 699-709. https://doi.org/10.12989/sss.2018.22.6.699   DOI
47 Yamazaki, S., Nagata, N. and Abiru, H. (1992), "Tuned active dampers installed in the Minato Mirai (MM) 21 Landmark Tower in Yokohama", J. Wind Eng. Indust. Aerodyn., 43(1-3), 1937-1948. https://doi.org/10.1016/0167-6105(92)90618-K   DOI
48 Yanik, A. (2019), "Absolute instantaneous optimal control performance index for active vibration control of structures under seismic excitation", Shock Vib., 2019, 4207427. https://doi.org/10.1155/2019/4207427   DOI
49 Zhan, M., Wang, S., Yang, T., Liu, Y. and Yu, B. (2017), "Optimum design and vibration control of a space structure with the hybrid semi-active control devices", Smart Struct. Syst., Int. J., 19(4), 341-350. https://doi.org/10.12989/sss.2017.19.4.341   DOI
50 Hwang, J.S., Huang, Y.N., Hung, Y.H. and Huang, J.C. (2004), "Applicability of seismic protective systems to structures with vibration-sensitive equipment", J. Struct. Eng., 130(11), 1676-1684. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1676)   DOI
51 Ahmadi, H.R. and Anvari, D. (2018b), "New damage index based on least squares distance for damage diagnosis in steel girder of bridge's deck", Struct. Control Health Monitor., 25(10), e2232. https://doi.org/10.1002/stc.2232   DOI
52 Ahmadi, H.R., Namdari, N., Cao, M. and Bayat, M. (2019), "Seismic investigation of pushover methods for concrete piers of curved bridges in plan", Comput. Concrete, Int. J., 23(1), 1-10. https://doi.org/10.12989/cac.2019.23.1.001   DOI
53 Alavi, A.H., Jiao, P., Buttlar, W.G. and Lajnef, N. (2018), "Internet of Things-enabled smart cities: State-of-the-art and future trends", Measurement, 129, 589-606. https://doi.org/10.1016/j.measurement.2018.07.067   DOI
54 Amini, F. and Tavassoli, M.R. (2005), "Optimal structural active control force, number and placement of controllers", Eng. Struct., 27(9), 1306-1316. https://doi.org/10.1016/j.engstruct.2005.01.006   DOI
55 Rabczuk, T., Samaniego, E. and Belytschko, T. (2007), "Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction", Int. J. Impact Eng., 34(2), 163-177. https://doi.org/10.1016/j.ijimpeng.2005.08.012   DOI
56 Najafabadi, A.A., Daneshjoo, F. and Ahmadi, H.R. (2020), "Multiple damage detection in complex bridges based on strain energy extracted from single point measurement", Frontiers Struct. Civil Eng., 14, 722-730. https://doi.org/10.1007/s11709-020-0624-5   DOI
57 Lu, Z., Li, J. and Jia, C. (2018), "Studies on energy dissipation mechanism of an innovative viscous damper filled with oil and silt", Sustainability, 10(6), 1-13. https://doi.org/10.3390/su10061777   DOI
58 Mahdavi, N., Ahmadi, H.R. and Mahdavi, H. (2012), "A comparative study on conventional push-over analysis method and incremental dynamic analysis (IDA) approach", Scientific Res. Essays, 7(7), 751-773. https://doi.org/10.5897/SRE10.042   DOI
59 Miah, M.S., Chatzi, E.N. and Weber, F. (2015), "Semi-active control for vibration mitigation of structural systems incorporating uncertainties", Smart Mater. Struct., 24(5), 055016. https://doi.org/10.1088/0964-1726/24/5/055016   DOI
60 Mirfakhraei, S.F., Ahmadi, H.R. and Chan, R. (2020), "Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical)", Smart Struct. Syst., Int. J., 25(2), 229-240. https://doi.org/10.12989/sss.2020.25.2.229   DOI
61 Ras, A. and Boumechra, N. (2016), "Seismic energy dissipation study of linear fluid viscous dampers in steel structure design", Alexandria Eng. J., 55(3), 2821-2832. https://doi.org/10.1016/j.aej.2016.07.012   DOI
62 Cao, H., Reinhorn, A.M. and Soong, T.T. (1998), "Design of an active mass damper for a tall TV tower in Nanjing, China", Eng. Struct., 20(3), 134-143. https://doi.org/10.1016/S0141-0296(97)00072-2   DOI
63 Bagha, A.K. and Modak, S.V. (2017), "Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity", Smart Struct. Syst., Int. J., 20(3), 273-283. https://doi.org/10.12989/sss.2017.20.3.273   DOI
64 Bayat, M., Ahmadi, H.R. and Mahdavi, N. (2019), "Application of power spectral density function for damage diagnosis of bridge piers", Struct. Eng. Mech., Int. J., 71(1), 57-63. https://doi.org/10.12989/sem.2019.71.1.057   DOI
65 Bayat, M., Pakar, I., Ahmadi, H.R., Cao, M. and Alavi, A.H. (2020a), "Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems", Struct. Eng. Mech., Int. J., 73(3), 331-337. https://doi.org/10.12989/sem.2020.73.3.331   DOI
66 Bayramoglu, G., Ozgen, A. and Altinok, E. (2014), "Seismic performance evaluation and retrofitting with viscous fluid dampers of an existing bridge in Istanbul", Struct. Eng. Mech., Int. J., 49(4), 463-477. https://doi.org/10.12989/sem.2014.49.4.463   DOI
67 Cao, M. and Qiao, P. (2009), "Novel Laplacian scheme and multiresolution modal curvatures for structural damage identification", Mech. Syst. Signal Process., 23(4), 1223-1242. https://doi.org/10.1016/j.ymssp.2008.10.001   DOI
68 Cheng, F.Y., Jiang, H. and Lou, K. (2008), Smart structures: innovative systems for seismic response control, CRC Press, Boca Raton, Florida, USA.
69 Constantinou, M.C., Tsopelas, P., Hammel, W. and Sigaher, A.N. (2001), "Toggle-brace-damper seismic energy dissipation systems", J. Struct. Eng., 127(2), 105-112. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(105)   DOI
70 Bisheh, H., Wu, N. and Rabczuk, T. (2019), "Free vibration analysis of smart laminated carbon nanotube-reinforced composite cylindrical shells with various boundary conditions in hygrothermal environments", Thin-Wall. Struct., 149, 106500. https://doi.org/10.1016/j.tws.2019.106500   DOI
71 Cao, M., Radzienski, M., Xu, W. and Ostachowicz, W. (2014), "Identification of multiple damage in beams based on robust curvature mode shapes", Mech. Syst. Signal Process., 46(2), 468-480. https://doi.org/10.1016/j.ymssp.2014.01.004   DOI