Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.5.617

A new hybrid model for MR elastomer device and parameter identification based on improved FOA  

Yu, Yang (School of Civil and Environmental Engineering, University of Technology Sydney)
Yousefi, Amir M. (Centre for Infrastructure Engineering, Western Sydney University)
Yi, Kefu (School of Automotive and Mechanical Engineering, Changsha University of Science and Technology)
Li, Jianchun (School of Civil and Environmental Engineering, University of Technology Sydney)
Wang, Weiqiang (College of Water Conservancy and Hydropower Engineering, Hohai University)
Zhou, Xinxiu (Research Institute for Frontier Science, Beihang University)
Publication Information
Smart Structures and Systems / v.28, no.5, 2021 , pp. 617-629 More about this Journal
Abstract
A new hysteresis model based on curve fitting method is presented in this work to portray the greatly nonlinear and hysteretic relationships between shear force and displacement responses of the magnetorheological (MR) elastomer base isolator. Compared with classical hysteresis models such as Bouc-Wen or LuGre friction model, the proposed model combines the hyperbolic sine function and Gaussian function to model the hysteretic loops of the device responses, contributing to a great decline of model parameters. Then, an improved fruit fly optimization algorithm (FOA) is proposed to optimize the model parameters, in which a self-adaptive step is employed rather than the fixed step to balance the global and local optimum search abilities of algorithm. Finally, the experimental results of the device under both harmonic and random excitations are used to verify the performance of the proposed hybrid model and parameter identification algorithm with the satisfactory results.
Keywords
base isolator; fruit fly optimization algorithm (FOA); hybrid model; magnetorheological (MR) elastomer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Behrooz, M., Wang, X. and Gordaninejad, F. (2014), "Modeling of a new semi-active/passive magnetorheological elastomer isolator", Smart Mater. Struct., 23(4), 045013. https://doi.org/10.1088/0964-1726/23/4/045013   DOI
2 Charalampakis, A.E. and Koumousis, V.K. (2008), "Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm", J. Sound Vib., 314(3-5), 571-585. https://doi.org/10.1016/j.jsv.2008.01.018   DOI
3 Fu, J., Lai, J., Yang, Z., Bai, J. and Yu, M. (2020), "Fuzzy-neural network control for a magnetorheological elastomer vibration isolation system", Smart Mater. Struct., 29(7), 074001. https://doi.org/10.1088/1361-665X/ab874d   DOI
4 Jimenez, R. and Alvarez-Icaza, L. (2005), "LuGre friction model for a magnetorheological damper", Struct. Control Hlth., 12(1), 91-116. https://doi.org/10.1002/stc.58   DOI
5 Kwok, N., Ha, Q., Nguyen, T., Li, J. and Samali, B. (2006), "A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization", Sensor Actuat. A-Phys., 132(2), 441-451. https://doi.org/10.1016/j.sna.2006.03.015   DOI
6 Leng, D., Sun, S., Xu, K. and Liu, G. (2020), "A physical model of magnetorheological elastomer isolator and its dynamic analysis", J. Intell. Mater. Syst. Struct., 31(9), 1141-1156.   DOI
7 Li, Y. and Li, J. (2019), "Overview of the development of smart base isolation system featuring magnetorheological elastomer", Smart Struct. Syst., Int. J., 24(1), 37-52. https://doi.org/10.12989/sss.2019.24.1.037   DOI
8 Zhang, X., Lu, X., Jia, S. and Li, X. (2018), "A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning", Appl. Soft. Comput., 70, 371-388. https://doi.org/10.1016/j.asoc.2018.05.030   DOI
9 Zhou, X., Sun, J., Li, H., Lu, M. and Zeng, F. (2020), "PMSM open-phase fault-tolerant control strategy based on four-leg inverter", IEEE T. Power Electr., 35(3), 2799-2808. https://doi.org/10.1109/TPEL.2019.2925823   DOI
10 Li, M.W., Geng, J., Hong, W.C. and Zhang, Y. (2018), "Hybridizing chaotic and quantum mechanisms and fruit fly optimization algorithm with least squares support vector regression model in electric load forecasting", Energies, 11(9), 2226. https://doi.org/10.3390/en11092226   DOI
11 Mullins, L. and Tobin, N. (1957), "Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers", Rubber Chem. Technol., 30(2), 555-571. https://doi.org/10.5254/1.3542705   DOI
12 Trivedi, R.R., Pawaskar, D.N. and Shimpi, R.P. (2016), "Optimization of static and dynamic travel range of electrostatically driven microbeams using particle swarm optimization", Adv. Eng. Softw., 97, 1-16. https://doi.org/10.1016/j.advengsoft.2016.01.005   DOI
13 Neshat, M., Sepidnam, G., Sargolzaei, M. and Toosi, A.N. (2014), "Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications", Artif. Intell. Rev., 42(4), 965-997. https://doi.org/10.1007/s10462-012-9342-2   DOI
14 Niu, J., Zhong, W., Liang, Y., Luo, N. and Qian, F. (2015), "Fruit fly optimization algorithm based on differential evolution and its application on gasification process operation optimization", Knowl.-Based Syst., 88, 253-263. https://doi.org/10.1016/j.knosys.2015.07.027   DOI
15 Pan, W.T. (2013), "Using modified fruit fly optimisation algorithm to perform the function test and case studies", Connect. Sci., 25(2-3), 151-160. https://doi.org/10.1080/09540091.2013.854735   DOI
16 Piatkowski, T. (2014), "Dahl and LuGre dynamic friction models - The analysis of selected properties", Mech. Mach. Theory, 73, 91-100. https://doi.org/10.1016/j.mechmachtheory.2013.10.009   DOI
17 Tairidis, G., Foutsitzi, G., Koutsianitis, P. and Stavroulakis, G.E. (2016), "Fine tuning of a fuzzy controller for vibration suppression of smart plates using genetic algorithms", Adv. Eng. Softw., 101, 123-135. https://doi.org/10.1016/j.advengsoft.2016.01.019   DOI
18 Besdo, D. and Ihlemann, J. (2003), "Properties of rubberlike materials under large deformations explained by self-organizing linkage patterns", Int. J. Plast., 19(7), 1001-1018. https://doi.org/10.1016/S0749-6419(02)00090-6   DOI
19 Lin, S.M. (2013), "Analysis of service satisfaction in web auction logistics service using a combination of Fruit fly optimization algorithm and general regression neural network", Neural Comput. Appl., 22(3-4), 783-791. https://doi.org/10.1007/s00521-011-0769-1   DOI
20 Aziz, S.A.A., Mazlan, S.A., Ismail, N.I.N. and Choi, S.-B. (2018), "Implementation of functionalized multiwall carbon nanotubes on magnetorheological elastomer", J. Mater. Sci., 53(14), 10122-10134. https://doi.org/10.1007/s10853-018-2315-3   DOI
21 Hwang, Y., Lee, C.W., Lee, J. and Jung, H.J. (2020), "Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing", Smart Struct. Syst., Int. J., 25(3), 323-335. https://doi.org/10.12989/sss.2020.25.3.323   DOI
22 Nguyen, X.B., Komatsuzaki, T., Iwata, Y. and Asanuma, H. (2018), "Robust adaptive controller for semi-active control of uncertain structures using a magnetorheological elastomer-based isolator", J. Sound Vib., 434, 192-212. https://doi.org/10.1016/j.jsv.2018.07.047   DOI
23 Sun, S.S., Yang, J., Li, W.H., Du, H., Alici, G., Yan, T.H. and Nakano, M. (2017), "Development of an isolator working with magnetorheological elastomers and fluids", Mech. Syst. Signal Pr., 83, 371-384. https://doi.org/10.1016/j.ymssp.2016.06.020   DOI
24 Wen, Q., Wang, Y. and Gong, X. (2017), "The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles", Smart Mater. Struct., 26(7), 075012. https://doi.org/10.1088/1361-665X/aa7396   DOI
25 Xin, F.-L., Bai, X.-X. and Qian, L.-J. (2017), "Principle, modeling, and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles", J. Intell. Mater. Syst. Struct., 28(16), 2239-2254.   DOI
26 Yang, F., Sedaghati, R. and Esmailzadeh, E. (2009), "Development of LuGre friction model for large-scale magneto-rheological fluid dampers", J. Intell. Mater. Syst. Struct., 20(8), 923-937.   DOI
27 Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2017), "Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core", Smart Struct. Syst., Int. J., 19(1), 21-31. https://doi.org/10.12989/sss.2017.19.1.021   DOI
28 Aguirre, N., Ikhouane, F., Rodellar, J. and Christenson, R. (2012), "Parametric identification of the Dahl model for large scale MR dampers", Struct. Control Hlth., 19(3), 332-347. https://doi.org/10.1002/stc.434   DOI
29 Bastola, A.K. and Li, L. (2018), "A new type of vibration isolator based on magnetorheological elastomer", Mater. Des., 157, 431-436. https://doi.org/10.1016/j.matdes.2018.08.009   DOI
30 Yousefi, A.M., Samali, B. and Hajirasouliha, I. (2020), "Experimental and numerical investigations of cold-formed austenitic stainless steel unlipped channels under bearing loads", Thin Wall. Struct., 152, 106768. https://doi.org/10.1016/j.tws.2020.106768   DOI
31 Yang, J., Du, H., Li, W., Li, Y., Li, J., Sun, S. and Deng, H.X. (2013), "Experimental study and modeling of a novel magnetorheological elastomer isolator", Smart Mater. Struct., 22(11), 117001. https://doi.org/10.1088/0964-1726/22/11/117001   DOI
32 Zhang, X. and Li, W. (2009), "Adaptive tuned dynamic vibration absorbers working with MR elastomers", Smart Struct. Syst., Int. J., 5(5), 517-529. https://doi.org/10.12989/sss.2009.5.5.517   DOI
33 Zhu, W. and Rui, X.T. (2014), "Semiactive vibration control using a magnetorheological damper and a magnetorheological elastomer based on the bouc-wen model", Shock Vib., 2014, 405412. https://doi.org/10.1155/2014/405421   DOI