Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.4.553

Hybrid fragility curve derivation of buildings based on post-earthquake reconnaissance data  

Lee, Sangmok (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
Moon, Do-Soo (Department of Civil Engineering, University of Hawaii at Manoa)
Kim, Byungmin (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
Kim, Jeongseob (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
Lee, Young-Joo (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Smart Structures and Systems / v.28, no.4, 2021 , pp. 553-566 More about this Journal
Abstract
This study proposes a new hybrid method that uses both of post-earthquake reconnaissance data and numerical analysis results based on a finite element (FE) model. As the uncertainty of a capacity threshold for a structural damage state needs to be estimated carefully, in the proposed method, the probabilistic distribution parameters of capacity thresholds are evaluated based on post-earthquake reconnaissance data. Subsequently, the hybrid fragility curves were derived for several damage states using the updated distribution parameters of capacity thresholds. To illustrate the detailed process of the proposed hybrid method, it was applied to piloti-type reinforce concrete (RC) buildings which were affected by the 2017 Pohang earthquake, Korea. In the example, analytical fragility curves were derived first, and then hybrid fragility curves were obtained using the distribution parameters of capacity thresholds which were updated based on actual post-earthquake reconnaissance data about the Pohang city. The results showed that the seismic fragility estimates approached to the empirical failure probability at 0.27 g PGA, corresponding to the ground motion intensity of the Pohang earthquake. To verify the proposed method, hybrid fragility curves were derived with the hypothetical reconnaissance data sets created based on assumed distribution parameters with errors of 10% and 1%. As a result, it was identified that the distribution parameters accurately converged to the assumed parameters and the case of 1% error had better convergence than that of 10% error.
Keywords
capacity threshold; hybrid curve; piloti-type buildings; post-earthquake reconnaissance; seismic fragility;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Giordano, N., De Luca, F., Sextos, A., Cortes, F.R., Ferreira, C.F. and Wu, J. (2021), "Empirical seismic fragility models for Nepalese school buildings", Nat. Hazards, 105, 339-362. https://doi.org/10.1007/s11069-020-04312-1   DOI
2 Guneyisi, E.M. and Altay, G. (2008), "Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes", Struct. Saf., 30(5), 461-480. https://doi.org/10.1016/j.strusafe.2007.06.001   DOI
3 Haukaas, T. (2003), "Finite element reliability and sensitivity methods for performance-based engineering", Ph.D. Dissertation; University of California, Berkeley, CA, USA.
4 Hueste, M.B.D. and Bai, J.W. (2007), "Seismic retrofit of a reinforced concrete flat-slab structure: Part II-Seismic fragility analysis", Eng. Struct., 29(6), 1178-1188. https://doi.org/10.1016/j.engstruct.2006.07.022   DOI
5 Jaiswal, K.S., Aspinall, W., Perkins, D., Wald, D. and Porter, K.A. (2012), "Use of expert judgment elicitation to estimate seismic vulnerability of selected building types", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
6 Ji, J., Elnashai, A.S. and Kuchma, D.A. (2009), "Seismic fragility relationships of reinforced concrete high-rise buildings", Struct. Des. Tall Spec., 18(3), 259-277. https://doi.org/10.1002/tal.408   DOI
7 Kang, S., Kim, B., Bae, S., Lee, H. and Kim, M. (2019), "Earthquake-induced ground deformations in the low-seismicity region: a case of the 2017 M5.4 Pohang, South Korea, earthquake", Earthq. Spectra, 35, 1235-1260. https://doi.org/10.1193/062318EQS160M   DOI
8 Silva, V., Crowley, H., Varum, H., Pinho, R. and Sousa, R. (2014), "Evaluation of analytical methodologies used to derive vulnerability functions", Earthq. Eng. Struct. Dyn., 43(2), 181-204. https://doi.org/10.1002/eqe.2337   DOI
9 Moon, D.-S., Lee, Y.-J. and Lee, S. (2018), "Fragility analysis of space reinforced concrete frame structures with structural irregularity in plan", J. Struct. Eng., 144(8), 04018096. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002092   DOI
10 Moradloo, J., Naserasadi, K. and Zamani, H. (2018), "Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model", Struct. Eng. Mech., Int. J., 68(6), 747-760. https://doi.org/10.12989/sem.2018.68.6.747   DOI
11 Park, Y.-J. and Ang, A.H.-S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)   DOI
12 Ramamoorthy, S.K., Gardoni, P. and Bracci, J.M. (2006), "Probabilistic demand models and fragility curves for reinforced concrete frames", J. Struct. Eng., 132(10), 1563-1572. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1563)   DOI
13 Razzaghi, M.S., Safarkhanlou, M., Mosleh, A. and Hosseini, P. (2018), "Fragility assessment of RC bridges using numerical analysis and artificial neural networks", Earthq. Struct., Int. J., 15(4), 431-441. http://dx.doi.org/10.12989/eas.2018.15.4.431   DOI
14 Rosti, A., Rota, M. and Penna, A. (2020), "Empirical fragility curves for Italian URM buildings", Bull. Earthq. Eng., 19(8), 3057-3076. https://doi.org/10.1007/s10518-020-00845-9   DOI
15 Ang, A.H.-S. and Tang, W.H. (2007), Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, (2nd Edition), John Wiley & Sons, Hoboken, NJ, USA.
16 Kappos, A.J., Panagopoulos, G., Panagiotopoulos, C. and Penelis, G. (2006), "A hybrid method for the vulnerability assessment of R/C and URM buildings", B. Earthq. Eng., 4(4), 391-413. https://doi.org/10.1007/s10518-006-9023-0   DOI
17 Kim, H., Sim, S.-H., Lee, J., Lee, Y.-J. and Kim, J.-M. (2017), "Flood fragility analysis for bridges with multiple failure modes", Adv. Mech. Eng., 9(3), 1-11. https://doi.org/10.1177/1687814017696415   DOI
18 Kim, T., Chu, Y., Kim, S.R. and Bhandari, D. (2018), "Seismic behavior of domestic piloti-type buildings damaged by 2017 Pohang earthquake", J. Earthq. Eng. Soc. Korea, 22(3), 161- 168, (in Korean), https://doi.org/10.5000/EESK.2018.22.3.161   DOI
19 Askan, A. and Yucemen, M.S. (2010), "Probabilistic methods for the estimation of potential seismic damage: Application to reinforced concrete buildings in Turkey", Struct. Saf., 32(4), 262-271. https://doi.org/10.1016/j.strusafe.2010.04.001   DOI
20 Barbato, M., Gu, Q. and Conte, J.P. (2010), "Probabilistic pushover analysis of structural and soil-structure systems", J. Struct. Eng., 136(11), 1330-1341. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000231   DOI
21 Kappos, A.J., Stylianidis, K.C. and Pitilakis, K. (1998), "Development of seismic risk scenarios based on a hybrid method of vulnerability assessment", Nat. Hazards, 17(2), 177- 192, https://doi.org/10.1023/A:1008083021022   DOI
22 Kwon, O.-S. and Elnashai, A. (2006), "The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure", Eng. Struct., 28(2), 289-303. https://doi.org/10.1016/j.engstruct.2005.07.010   DOI
23 Lee, Y.-J. and Moon, D.-S. (2014), "A new methodology of the development of seismic fragility curves", Smart Struct. Syst., Int. J., 14(5), 847-867. http://dx.doi.org/10.12989/sss.2014.14.5.847   DOI
24 Der Kiureghian, A. (2005), First- and Second-Order Reliability Methods, Engineering Design Reliability Handbook, (edited by Nikolaidis, E., Ghiocel, D.M. and Singhal, S.), Chapter 14, CRC Press, Boca Raton, FL, USA.
25 Kim, H.-S., Kim, M., Baise, L.G. and Kim, B. (2020b), "Local and regional evaluation of liquefaction potential index and liquefaction severity number for liquefaction-induced sand boils in Pohang, South Korea", Soil Dyn. Earthq. Eng., 106459. https://doi.org/10.1016/j.soildyn.2020.106459   DOI
26 Kircher, C.A., Whitman, R.V. and Holmes, W.T. (2006), "HAZUS earthquake loss estimation methods", Nat. Hazards Rev., 7(2), 45-59. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(45)   DOI
27 Lee, Y.-J. and Song, J. (2012), "Finite-element-based system reliability analysis of fatigue-induced sequential failures", Reliab. Eng. Syst. Safe., 108, 131-141. https://doi.org/10.1016/j.ress.2012.05.007   DOI
28 Lee, Y.-J., Song, J. and Tuegel, E. (2008), "Finite element system reliability analysis of a wing torque box", Proceedings of the 10th AIAA Nondeterministic Approaches Conference, Schaumburg, IL, USA, April.
29 Kim, B., Ji, Y., Kim, M., Lee, Y.-J., Kang, H., Yun, N.-R., Kim, H. and Lee, J. (2020a), "Building damage caused by the 2017 M5.4 Pohang, South Korea, earthquake, and effects of ground conditions", J. Earthq. Eng., 1-19. https://doi.org/10.1080/13632469.2020.1785585   DOI
30 Singhal, A. and Kiremidjian, A.S. (1998), "Bayesian updating of fragilities with application to RC frames", J. Struct. Eng., 124(8), 922-929. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:8(922)   DOI
31 Pitilakis, K., Crowley, H. and Kaynia, A.M. (2014), "SYNER-G: typology definition and fragility functions for physical elements at seismic risk", Geotec. Geol. Earthq. Eng., 27, 1-28. https://doi.org/10.1007/978-94-007-7872-6   DOI
32 Yoon, S., Lee, Y.-J. and Jung, H.-J. (2018), "A comprehensive framework for seismic risk assessment of urban water transmission", Int. J. Disast. Risk Re., 31, 983-994. https://doi.org/10.1016/j.ijdrr.2018.09.002   DOI
33 Dolsek, M. (2012), "Simplified method for seismic risk assessment of buildings with consideration of aleatory and epistemic uncertainty", Struct. Infrastruct. Eng., 8(10), 939-953. https://doi.org/10.1080/15732479.2011.574813   DOI
34 Ellingwood, B.R., Celik, O.C. and Kinali, K. (2007), "Fragility assessment of building structural systems in Mid-America", Earthq. Eng. Struct. Dyn., 36(13), 1935-1952. https://doi.org/10.1002/eqe.693   DOI
35 Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141   DOI
36 Yu, X., Lu, D. and Li, B. (2016), "Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis", Earthq. Struct., Int. J., 10(1), 141-161. https://doi.org/10.12989/eas.2016.10.1.141   DOI
37 Steelman, J., Song, J. and Hajjar, J.F. (2007), "Integrated data flow and risk aggregation for consequence-based risk management of seismic regional loss", Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA, November.
38 Wen, Y.K., Ellingwood, B.R. and Bracci, J.M. (2004), "Vulnerability function framework for consequence-based engineering", MAE Center Report 04-04.
39 Elnashai, A.S., Papanikolaou, V.K. and Lee, D. (2010), "ZEUS NL - A System for Inelastic Analysis of Structures", User's manual; Mid-America Earthquake (MAE) Center, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
40 Federal Emergency Management Agency (FEMA) (2013), "Hazus-MH 2.1: Technical manual. Multi-hazard loss estimation methodology, earthquake model".
41 Li, L.-X., Li, H.-N. and Li, C. (2018), "Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations", Struct. Eng. Mech., Int. J., 68(6), 677-689. https://doi.org/10.12989/sem.2018.68.6.677   DOI
42 Liu, Z. and Zhang, Z. (2017), "Fragility analysis of concrete-filled steel tube arch bridge subjected to near-fault ground motion considering the wave passage effect", Smart Struct. Syst., Int. J., 19(4), 415-429. https://doi.org/10.12989/sss.2017.19.4.415   DOI
43 Martinez, A., Hube, M.A. and Rollins, K.M. (2017), "Analytical fragility curves for non-skewed highway bridges in Chile", Eng. Struct., 141, 530-542. https://doi.org/10.1016/j.engstruct.2017.03.041   DOI
44 Lee, J., Lee, Y.-J., Kim, H., Sim, S.-H. and Kim, J.-M. (2016), "A new methodology development for flood fragility curve derivation considering structural deterioration for bridges", Smart Struct. Syst., Int. J., 17(1), 149-165. http://dx.doi.org/10.12989/sss.2016.17.1.149   DOI
45 Sim, C., Laughery, L., Chiou, T.C. and Weng, P.-W. (2018), 2017 Pohang Earthquake - Reinforced Concrete Building Damage Survey. https://datacenterhub.org/resources/14728
46 Paik, I.-Y., Shim, C.-S., Chung, Y.-S. and Sang, H.-J. (2011), "Statistical properties of material strength of concrete, re-bar and strand used in domestic construction site", J. Korea Concr. Inst., 23(4), 421-430. [In Korean] https://doi.org/10.4334/JKCI.2011.23.4.421   DOI
47 Montiel, M.A. and Ruiz, S.E. (2007), "Influence of structural capacity uncertainty on seismic reliability of buildings under narrow-band motions", Earthq. Eng. Struct. Dyn., 36(13), 1915- 1934. https://doi.org/10.1002/eqe.711   DOI
48 Mosleh, A. and Apostolakis, G. (1986), "The assessment of probability distributions from expert opinions with an application to seismic fragility curves", Risk Anal., 6(4), 447-461. https://doi.org/10.1111/j.1539-6924.1986.tb00957.x   DOI
49 Rossetto, T. and Elnashai, A. (2003), "Derivation of vulnerability functions for European-type RC structures based on observational data", Eng. Struct., 7(3), 1241-1263. https://doi.org/10.1016/S0141-0296(03)00060-9   DOI