Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.4.535

Machine learning and RSM models for prediction of compressive strength of smart bio-concrete  

Algaifi, Hassan Amer (Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia)
Bakar, Suhaimi Abu (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Alyousef, Rayed (Department of Civil Engineering, College of Engineering, Prince Sattam bin Abdulaziz University)
Sam, Abdul Rahman Mohd. (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Alqarni, Ali S. (Department of Civil Engineering, College of Engineering, King Saud University)
Ibrahim, M.H. Wan (Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia)
Shahidan, Shahiron (Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia)
Ibrahim, Mohammed (Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals)
Salami, Babatunde Abiodun (Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals)
Publication Information
Smart Structures and Systems / v.28, no.4, 2021 , pp. 535-551 More about this Journal
Abstract
In recent years, bacteria-based self-healing concrete has been widely exploited to improve the compressive strength of concrete using different bacterial species. However, both the identification of the optimal involved reaction parameters and theoretical framework information are still limited. In the present study, both experimentally and numerical modelling using machine learning (ANN and ANFIS) and response surface methodology (RSM) were implemented to evaluate and optimse the evolution of bacterial concrete strength. Therefore, a total of 58 compressive strength tests of the concrete incorporating new bacterial species were designed using different concentrations of urea, cells concentration, calcium, nutrient and time. Based on the results, the compressive strength of the bacterial concrete improved by 16% due to the decrement of the pore percentage in the concrete skin; specifically, 5 mm from the concrete surface, compared to that of the control concrete. In the same context, both machine the learning and RSM models indicated that the optimal range of urea, calcium, nutrient and bacterial cells were (18-23 g/L), (150-350 mM), (1-3 g/L) and 2×107 cells/mL, respectively. Based on the statistical analysis, RMSE, R2, MPE, RAE and RRSE were (0.793, 0.785), (0.985, 0.986), (1.508, 1.1), (0.11, 0.09) and (0.121, 0.12) from both the ANN and ANFIS models, respectively, while; the following values (0.839, 0.972, 1.678, 0.131 and 0.165) was obtained from RSM model, respectively. As such, it can be concluded that a high correlation and minimum error were obtained, however, machine learning models provided more accurate results compared to that of the RSM model.
Keywords
concrete strength; machine learning; response surface methodology; self-healing concrete;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhang, J.L., Wu, R.S., Li, Y.M., Zhong, J.Y., Deng, X., Liu, B., Han, N.X. and Xing, F. (2016), "Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process", Appl. Microbiol. Biotechnol., 100(15), 6661-6670. https://doi.org/10.1007/S00253-016-7382-2   DOI
2 Snoeck, D., Dewanckele, J., Cnudde, V. and De Belie, N. (2016), "X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers", Cem. Concrete Compos., 65, 83-93. https://doi.org/10.1016/j.cemconcomp.2015.10.016   DOI
3 Scrivener, K., Fullmann, T., Gallucci, E., Walenta, G. and Bermejo, E. (2004), "Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods", Cem. Concrete Res., 34(9), 1541-1547. https://doi.org/10.1016/j.cemconres.2004.04.014   DOI
4 Nigdeli, S.M. and Bekdas, G. (2013), "Optimum tuned mass damper design for preventing brittle fracture of RC buildings", Smart Struct. Syst., Int. J., 12(2), 137-155. https://doi.org/10.12989/sss.2013.12.2.137   DOI
5 Liu, Q.-f., Iqbal, M.F., Yang, J., Lu, X.-y., Zhang, P. and Rauf, M. (2021), "Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation", Constr. Build. Mater., 268, 121082. https://doi.org/10.1016/j.conbuildmat.2020.121082   DOI
6 Mahmud, M.Z.H., Hassan, N.A., Hainin, M.R. and Ismail, C.R. (2017), "Microstructural investigation on air void properties of porous asphalt using virtual cut section", Constr. Build. Mater., 155, 485-494. https://doi.org/10.1016/j.conbuildmat.2017.08.103   DOI
7 Naderpour, H. and Mirrashid, M. (2020), "Estimating the compressive strength of eco-friendly concrete incorporating recycled coarse aggregate using neuro-fuzzy approach", J. Clean. Prod., 121886. https://doi.org/10.1016/j.jclepro.2020.121886   DOI
8 Okwadha, G.D. and Li, J. (2010), "Optimum conditions for microbial carbonate precipitation", Chemosphere, 81(9), 1143- 1148. https://doi.org/10.1016/j.chemosphere.2010.09.066   DOI
9 Onat, O. and Celik, E. (2017), "An integral based fuzzy approach to evaluate waste materials for concrete", Smart Struct. Syst., Int. J., 19(3), 323-333. https://doi.org/10.12989/sss.2017.19.3.323   DOI
10 Shahmansouri, A.A., Bengar, H.A. and Jahani, E. (2019), "Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm", Constr. Build. Mater., 229, 116883. https://doi.org/10.1016/j.conbuildmat.2019.116883   DOI
11 Shahmansouri, A.A., Yazdani, M., Ghanbari, S., Bengar, H.A., Jafari, A. and Ghatte, H.F. (2020), "Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite", J. Clean. Prod., 279, 123697. https://doi.org/10.1016/j.jclepro.2020.123697   DOI
12 Xu, J., Wang, B. and Zuo, J. (2017), "Modification effects of nanosilica on the interfacial transition zone in concrete: A multiscale approach", Cem. Concrete Compos., 81, 1-10. https://doi.org/10.1016/j.cemconcomp.2017.04.003   DOI
13 Zhao, Y., Moayedi, H., Bahiraei, M. and Foong, L.K. (2020), "Employing TLBO and SCE for optimal prediction of the compressive strength of concrete", Smart Struct. Syst., Int. J., 26(6), 753-763. http://doi.org/10.12989/sss.2020.26.6.753   DOI
14 Altowayti, W.A.H., Algaifi, H.A., Bakar, S.A. and Shahir, S. (2019), "The adsorptive removal of As (III) using biomass of arsenic resistant Bacillus thuringiensis strain WS3: characteristics and modelling studies", Ecotoxicol. Environ. Safety, 172, 176-185. https://doi.org/10.1016/j.ecoenv.2019.01.067   DOI
15 Prasad, B.R., Eskandari, H. and Reddy, B.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23(1), 117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014   DOI
16 Qian, C., Wang, J., Wang, R. and Cheng, L. (2009), "Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii", Mater. Sci. Eng.: C, 29(4), 1273-1280. https://doi.org/10.1016/j.msec.2008.10.025   DOI
17 Dao, D.V., Ly, H.-B., Trinh, S.H., Le, T.-T. and Pham, B.T. (2019), "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete", Materials, 12(6), 983. https://doi.org/10.3390/ma12060983   DOI
18 Alshalif, A.F., Irwan, J., Othman, N., Al-Gheethi, A., Shamsudin, S. and Nasser, I.M. (2021), "Optimisation of carbon dioxide sequestration into bio-foamed concrete bricks pores using Bacillus tequilensis", J. CO2 Utiliz., 44, 101412. https://doi.org/10.1016/j.jcou.2020.101412   DOI
19 Alkroosh, I.S. and Sarker, P.K. (2019), "Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming", Comput. Concrete, Int. J., 24(4), 295-302. https://doi.org/10.12989/cac.2019.24.4.295   DOI
20 Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266   DOI
21 Hammoudi, A., Moussaceb, K., Belebchouche, C. and Dahmoune, F. (2019), "Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates", Constr. Build. Mater., 209, 425-436. https://doi.org/10.1016/j.conbuildmat.2019.03.119   DOI
22 Jafari, S. and Mahini, S.S. (2017), "Lightweight concrete design using gene expression programing", Constr. Build. Mater., 139, 93-100. https://doi.org/10.1016/j.conbuildmat.2021.122899   DOI
23 Awolusi, T.F., Oke, O.L., Akinkurolere, O.O. and Atoyebi, O.D. (2019), "Comparison of response surface methodology and hybrid-training approach of artificial neural network in modelling the properties of concrete containing steel fibre extracted from waste tyres", Cogent Eng., 6(1), 1649852. https://doi.org/10.1080/23311916.2019.1649852   DOI
24 Huseien, G.F., Sam, A.R.M., Algaifi, H.A. and Alyouef, R. (2021), "Development of a sustainable concrete incorporated with effective microorganism and fly Ash: Characteristics and modeling studies", Constr. Build. Mater., 285, 122899. https://doi.org/10.1016/j.conbuildmat.2021.122899   DOI
25 Nain, N., Surabhi, R., Yathish, N., Krishnamurthy, V., Deepa, T. and Tharannum, S. (2019), "Enhancement in strength parameters of concrete by application of Bacillus bacteria", Constr. Build. Mater., 202, 904-908. https://doi.org/10.1016/j.conbuildmat.2019.01.059   DOI
26 Zhang, J., Bian, F., Zhang, Y., Fang, Z., Fu, C. and Guo, J. (2018), "Effect of pore structures on gas permeability and chloride diffusivity of concrete", Constr. Build. Mater., 163, 402-413. https://doi.org/10.1016/j.conbuildmat.2017.12.111   DOI
27 Zhang, J., Li, D. and Wang, Y. (2020), "Predicting uniaxial compressive strength of oil palm shell concrete using a hybrid artificial intelligence model", J. Build. Eng., 30, 101282. https://doi.org/10.1016/j.jobe.2020.101282   DOI
28 Nathaniel, O., Sam, A.R.M., Lim, N.H.A.S., Adebisi, O. and Abdulkareem, M. (2020), "Biogenic approach for concrete durability and sustainability using effective microorganisms: A review", Constr. Build. Mater., 261, 119664. https://doi.org/10.1016/j.conbuildmat.2020.119664   DOI
29 Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, Int. J., 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463   DOI
30 Siddique, R., Jameel, A., Singh, M., Barnat-Hunek, D., Ait-Mokhtar, A., Belarbi, R. and Rajor, A. (2017), "Effect of bacteria on strength, permeation characteristics and microstructure of silica fume concrete", Constr. Build. Mater., 142, 92-100. https://doi.org/10.1016/j.conbuildmat.2017.03.057   DOI
31 Shahmansouri, A.A., Nematzadeh, M. and Behnood, A. (2021b), "Mechanical properties of GGBFS-based geopolymer concrete incorporating natural zeolite and silica fume with an optimum design using response surface method", J. Build. Eng., 36, 102138. https://doi.org/10.1016/j.jobe.2020.102138   DOI
32 Balam, N.H., Mostofinejad, D. and Eftekhar, M. (2017), "Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete", Constr. Build. Mater., 145, 107-116. https://doi.org/10.1016/j.conbuildmat.2017.04.003   DOI
33 Bundur, Z.B., Kirisits, M.J. and Ferron, R.D. (2015), "Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength", Cem. Concrete Res., 67, 237-245. https://doi.org/10.1016/j.cemconres.2014.10.002   DOI
34 Valipour, M., Yekkalar, M., Shekarchi, M. and Panahi, S. (2014), "Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments", J. Clean. Prod., 65, 418-423. https://doi.org/10.1016/j.jclepro.2013.07.055   DOI
35 Mondal, S. and Ghosh, A.D. (2019), "Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete", Constr. Build. Mater., 225, 67-75. https://doi.org/10.1016/j.conbuildmat.2019.07.122   DOI
36 Muthuraj, M. (2019), "Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS", Struct. Eng. Mech., Int. J., 70(6), 671-681. https://doi.org/10.12989/sem.2019.70.6.671   DOI
37 Zhao, Y., Zhong, X. and Foong, L.K. (2021b), "Predicting the splitting tensile strength of concrete using an equilibrium optimization model", Steel Compos. Struct., Int. J., 39(1), 81-93. https://doi.org/10.12989/scs.2021.39.1.081   DOI
38 Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, Int. J., 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355   DOI
39 Shaban, W.M., Yang, J., Elbaz, K., Xie, J. and Li, L. (2021), "Fuzzy-metaheuristic ensembles for predicting the compressive strength of brick aggregate concrete", Resour. Conserv. Recycl., 169, 105443. https://doi.org/10.1016/j.resconrec.2021.105443   DOI
40 Shaheen, N., Khushnood, R.A., Khaliq, W., Murtaza, H., Iqbal, R. and Khan, M.H. (2019), "Synthesis and characterization of bioimmobilized nano/micro inert and reactive additives for feasibility investigation in self-healing concrete", Constr. Build. Mater., 226, 492-506. https://doi.org/10.1016/j.conbuildmat.2019.07.202   DOI
41 Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020a), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)", Steel Compos. Struct., Int. J., 34(1), 155-170. https://doi.org/10.12989/scs.2020.34.1.155   DOI
42 Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020b), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., Int. J., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183   DOI
43 Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Software, 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014   DOI
44 Perumal, R. and Prabakaran, V. (2020), "Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs", Adv. Concrete Constr., Int. J., 10(6), 479-488. https://doi.org/10.12989/acc.2020.10.6.479   DOI
45 Shahmansouri, A.A., Bengar, H.A. and AzariJafari, H. (2021a), "Life cycle assessment of eco-friendly concrete mixtures incorporating natural zeolite in sulfate-aggressive environment", Constr. Build. Mater., 268, 121136. https://doi.org/10.1016/j.conbuildmat.2020.121136   DOI
46 Shirkhani, A., Davarnia, D. and Azar, B.F. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, Int. J., 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273   DOI
47 Jakubovskis, R., Jankute, A., Urbonavicius, J. and Gribniak, V. (2020), "Analysis of mechanical performance and durability of self-healing biological concrete", Constr. Build. Mater., 260, 119822. https://doi.org/10.1016/j.conbuildmat.2020.119822   DOI
48 Jena, S., Basa, B., Panda, K.C. and Sahoo, N.K. (2020), "Impact of Bacillus subtilis bacterium on the properties of concrete", Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.03.129   DOI
49 Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Computat. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009   DOI
50 Kathirvel, P. and Kaliyaperumal, S.R.M. (2017), "Probabilistic modeling of geopolymer concrete using response surface methodology", Comput. Concrete, Int. J., 19(6), 737-744. https://doi.org/10.12989/cac.2017.19.6.737   DOI
51 Nematzadeh, M., Shahmansouri, A.A. and Zabihi, R. (2021), "Innovative models for predicting post-fire bond behavior of steel rebar embedded in steel fiber reinforced rubberized concrete using soft computing methods", In: Structures, Vol. 31, pp. 1141-1162.   DOI
52 Nguyen, T.H., Ghorbel, E., Fares, H. and Cousture, A. (2019), "Bacterial self-healing of concrete and durability assessment", Cem. Concrete Compos., 104, 103340. https://doi.org/10.1016/j.cemconcomp.2019.103340   DOI
53 Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M.D., Marto, A., Mu'azu, M., Ghanbari, E., Mahdizadeh, M. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., Int. J., 22(4), 425-432. https://doi.org/10.12989/sss.2018.22.4.425   DOI
54 Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., Int. J., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241   DOI
55 Zhao, Y., Bai, C., Xu, C. and Foong, L.K. (2021a), "Efficient metaheuristic-retrofitted techniques for concrete slump simulation", Smart Struct. Syst., Int. J., 27(5), 745-759. http://doi.org/10.12989/sss.2021.27.5.745   DOI
56 Bundur, Z.B., Amiri, A., Ersan, Y.C., Boon, N. and De Belie, N. (2017), "Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability", Cem. Concrete Res., 98, 44-49. https://doi.org/10.1016/j.cemconres.2017.04.005   DOI
57 Reddy, B.M.S. and Revathi, D. (2019), "An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete", Materials Today: Proceedings, 19(2), 803-809. https://doi.org/10.1016/j.matpr.2019.08.135   DOI
58 Abubakar, A.U., Akcaoglu, T. and Marar, K. (2018), "P-value significance level test for high-performance steel fiber concrete (HPSFC)", Comput. Concrete, Int. J., 21(5), 485-493. https://doi.org/10.12989/cac.2018.21.5.485   DOI
59 Alabduljabbar, H., Huseien, G.F., Sam, A.R.M., Alyouef, R., Algaifi, H.A. and Alaskar, A. (2020), "Engineering Properties of Waste Sawdust-Based Lightweight Alkali-Activated Concrete: Experimental Assessment and Numerical Prediction", Materials, 13(23), 5490. https://doi.org/10.3390/ma13235490   DOI
60 Algaifi, H.A., Bakar, S.A., Sam, A.R.M., Abidin, A.R.Z., Shahir, S. and AL-Towayti, W.A.H. (2018), "Numerical modeling for crack self-healing concrete by microbial calcium carbonate", Constr. Build. Mater., 189, 816-824. https://doi.org/10.1016/j.conbuildmat.2018.08.218   DOI
61 Mahdinia, S., Eskandari-Naddaf, H. and Shadnia, R. (2019), "Effect of cement strength class on the prediction of compressive strength of cement mortar using GEP method", Constr. Build. Mater., 198, 27-41. https://doi.org/10.1016/j.conbuildmat.2018.11.265   DOI
62 Mukharjee, B.B. and Barai, S.V. (2014), "Influence of incorporation of nano-silica and recycled aggregates on compressive strength and microstructure of concrete", Constr. Build. Mater., 71, 570-578. https://doi.org/10.1016/j.conbuildmat.2014.08.040   DOI
63 Su, Y., Feng, J., Jin, P. and Qian, C. (2019), "Influence of bacterial self-healing agent on early age performance of cement-based materials", Constr. Build. Mater., 218, 224-234. https://doi.org/10.1016/j.conbuildmat.2019.05.077   DOI
64 Al-Mughanam, T., Aldhyani, T.H., AlSubari, B. and Al-Yaari, M. (2020), "Modeling of Compressive Strength of Sustainable SelfCompacting Concrete Incorporating Treated Palm Oil Fuel Ash Using Artificial Neural Network", Sustainability, 12(22), 9322. https://doi.org/10.3390/su12229322   DOI
65 Algaifi, H.A., Bakar, S.A., Sam, A.R.M., Ismail, M., Abidin, A.R.Z., Shahir, S. and Altowayti, W.A.H. (2020), "Insight into the role of microbial calcium carbonate and the factors involved in self-healing concrete", Constr. Build. Mater., 254, 119258. https://doi.org/10.1016/j.conbuildmat.2020.119258   DOI
66 Algaifi, H.A., Bakar, S.A., Alyousef, R., Sam, A.R.M., Ibrahim, M.W., Shahidan, S., Ibrahim, M. and Salami, B.A. (2021), "Bio-inspired self-healing of concrete cracks using new B. pseudomycoides species", J. Mater. Res. Technol., 12(5-6), 967-981. https://doi.org/10.1016/j.jmrt.2021.03.037   DOI
67 Sokhansefat, G., Moradian, M., Finnell, M., Behravan, A., Ley, M.T., Lucero, C. and Weiss, J. (2020), "Using X-ray computed tomography to investigate mortar subjected to freeze-thaw cycles", Cem. Concrete Compos., 108, 103520. https://doi.org/10.1016/j.cemconcomp.2020.103520   DOI
68 Soto-Perez, L., Lopez, V. and Hwang, S.S. (2015), "Response Surface Methodology to optimize the cement paste mix design: Time-dependent contribution of fly ash and nano-iron oxide as admixtures", Mater. Des., 86, 22-29. https://doi.org/10.1016/j.matdes.2015.07.049   DOI
69 Wang, J., Jonkers, H.M., Boon, N. and De Belie, N. (2017), "Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete", Appl. Microbiol. Biotechnol., 101(12), 5101-5114. https://doi.org/10.1007/s00253-017-8260-2   DOI
70 Wu, M., Hu, X., Zhang, Q., Cheng, W., Xue, D. and Zhao, Y. (2020), "Application of bacterial spores coated by a green inorganic cementitious material for the self-healing of concrete cracks", Cem. Concrete Compos., 103718. https://doi.org/10.1016/j.cemconcomp.2020.103718   DOI
71 Bahiraei, M., Mazaheri, N. and Hosseini, S. (2020), "Neural network modeling of thermo-hydraulic attributes and entropy generation of an ecofriendly nanofluid flow inside tubes equipped with novel rotary coaxial double-twisted tape", Powder Technology, 369, 162-175. https://doi.org/10.1016/j.powtec.2020.05.014   DOI