Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.3.425

A framework for fast estimation of structural seismic responses using ensemble machine learning model  

Li, Chunxiang (School of Mechanism and Engineering Science, Shanghai University)
Li, Hai (School of Mechanism and Engineering Science, Shanghai University)
Chen, Xu (International Research Institute of Disaster Science, Tohoku University)
Publication Information
Smart Structures and Systems / v.28, no.3, 2021 , pp. 425-441 More about this Journal
Abstract
While recognized as most rigorous procedure leading to 'exact' structural seismic responses, nonlinear time history analysis is usually time consuming and computational demanding, especially when numerous structures remain to be analyzed. This paper proposes a framework to improve the time efficiency in evaluating the structural seismic demands, using ensemble machine learning models based on 'classification-regression' philosophy. Typical tall pier bridges widely located in southwest China are employed as illustrative examples to validate the efficiency and performance of this proposed framework. The results and discussion show that with properly selected input variables, the proposed ensemble model (ORF-ANN herein) performs better in predicting seismic demands than other single learning algorithms (i.e., ANN and ORF), while the time efficiency is improved over 90%. This proposed model could drastically improve the efficiency for determining structural parameters in preliminary design process, and thus reduce the iterations of trail analysis. Additionally, the model constructed from proposed framework is believed especially favored for evaluating the post-earthquake states/resilience of a region and/or highway network, where thousands of structures might be contained, and conducting nonlinear time history analysis for each one would be prohibitively time consuming and delay the rescue operations.
Keywords
ensemble learning; machine learning framework; post-earthquake resilience assessment; tall pier bridges; time efficiency;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ferrario, E., Pedroni, N., Zio, E. and Lopez-Caballero, F. (2017), "Bootstrapped artificial neural networks for the seismic analysis of structural systems", Struct. Safety, 67, 70-84. http://doi.org/10.1016/j.strusafe.2017.03.003   DOI
2 Gasparini, D. and Vanmarcke, E. (1976), "Simulated earthquake motions compatible with prescribed response spectra", MIT Department of Civil Engineering Research Report NO. R76-4; Massachusetts Institute of Technology, Cambridge, MA, USA.
3 Guirguis, J. and Mehanny, S.S.F. (2013), "Evaluating code criteria for regular seismic behavior of continuous concrete box girder bridges with unequal height piers", J. Bridge Eng., 18(6), 486-498. http://doi.org/10.1061/(ASCE)BE.1943-5592.0000383   DOI
4 JTG/T B02-01-2008 (2008), Guidelines for seismic design of highway bridges, Chongqing communications scientific research design institute; Beijing, Ministry of Transport of the People's Republic of China.
5 Kanai, K. (1957), "Semi-empirical formula for the seismic characteristics of the ground", Bull. Earthq. Res. Inst., 35(2), 309-325. http://doi.org/10.3130/aijsaxx.57.1.0_281   DOI
6 Xu, J., Spencer Jr, B.F. and Lu, X. (2017), "Performance-based optimization of nonlinear structures subject to stochastic dynamic loading", Eng. Struct., 134, 334-345. http://doi.org/10.1016/j.engstruct.2016.12.051   DOI
7 Li, J., Song, X. and Fan, L. (2005), "Investigation for displacement ductility capacity of tall piers", Earthq. Eng. Eng. Vib., 25(1), 43-48.   DOI
8 Li, C., Chang, K., Cao, L. and Huang, Y. (2021), "Performance of a nonlinear hybrid base isolation system under the ground motions", Soil Dyn. Earthq. Eng., 143, 106589. https://doi.org/10.1016/j.soildyn.2021.106589   DOI
9 Lai, S.-S. (1982), "Statistical characterization of strong ground motion using power spectral density function", Bull. Seismol. Soc. Am., 72(1), 259-274. https://doi.org/10.1785/BSSA0720010259
10 Zhang, L. and Suganthan, P. (2017), "Benchmarking ensemble classifiers with novel co-trained kernal ridge regression and random vector functional link ensembles [research frontier]", IEEE Computat. Intell. Magaz., 12, 61-72. http://doi.org/10.1109/MCI.2017.2742867   DOI
11 Wang, Z., Pedroni, N., Zentner, I. and Zio, E. (2018b), "Seismic spreading ground", Bull. Earthq. Eng., 16(1), 229-257. http://doi.org/10.1007/s10518-017-0199-2   DOI
12 Scott, B.D., Park, R. and Priestley, M.J.N. (1982), "Stress-strain behaviour of concrete confined by overlapping hoops at low and high strain rates", J. Am. Concrete Inst., 79, 13-27.
13 Taucer, F., Spacone, E. and Filippou, F. (1991), "A fiber beam-column element for seismic response analysis of reinforced concrete structures", Report No. UCB/EERC-91/17; Earthquake Engineering Research Center, College of Engineering, University of California Berkekey, CA, USA.
14 Wang, X., Shafieezadeh, A. and Ye, A. (2018a), "Optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading ground", Bull. Earthq. Eng., 16(1), 229-257. http://doi.org/10.1007/s10518-017-0199-2   DOI
15 Padgett, J. and Desroches, R. (2008), "Methodology for the development of analytical fragility curves for retrofitted bridges", Earthq. Eng. Struct. Dyn., 37, 1157-1174. http://doi.org/10.1002/eqe.801   DOI
16 Wang, Z., Pedroni, N., Zentner, I. and Zio, E. (2018b), "Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment", Eng. Struct., 162, 213-225. http://doi.org/10.1016/j.engstruct.2018.02.024   DOI
17 Chopra, A.K. and Goel, R.K. (2002), "A modal pushover analysis procedure for estimating seismic demands for buildings", Earthq. Eng. Struct. Dyn., 31(3), 561-582. http://doi.org/10.1002/eqe.144   DOI
18 Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for 2000 sac federal emergency management agency steel moment frame guidelines", J. Struct. Eng.-ASCE, 128(4), 526-533. http://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)   DOI
19 Mangalathu, S. and Jeon, J.-S. (2019), "Stripe-based fragility analysis of multispan concrete bridge classes using machine learning techniques", Earthq. Eng. Struct. Dyn., 48(11), 1238-1255. http://doi.org/10.1002/eqe.3183   DOI
20 Mangalathu, S., Heo, G. and Jeon, J.-S. (2018), "Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes", Eng. Struct., 162, 166-176. http://doi.org/10.1016/j.engstruct.2018.01.053   DOI
21 Ding, Y., Wu, D., Su, J., Li, Z.-X., Zong, L. and Feng, K. (2021), "Experimental and numerical investigations on seismic performance of RC bridge piers considering buckling and low-cycle fatigue of high-strength steel bars", Eng. Struct., 227, 111464. http://doi.org/10.1016/j.engstruct.2020.111464   DOI
22 Alam, R., Peden, D. and Lach, J. (2020), "Wearable respiration monitoring: Interpretable inference with context and sensor biomarkers", IEEE J. Biomed. Health Inform., 25(6), 1938-1948. http://doi.org/10.1109/jbhi.2020.3035776   DOI
23 Chen, K., Gong, S., Xiang, T. and Loy, C.C. (2013), "Cumulative attribute space for age and crowd density estimation", Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June.
24 Aguirre, D.A. and Montejo, L.A. (2014), "Damping and frequency changes induced by increasing levels of inelastic seismic demand", Smart Struct. Syst., Int. J., 14(3), 445-468. http://doi.org/10.12989/sss.2014.14.3.445   DOI
25 Airouche, A., Bechtoula, H., Aknouche, H., Thoen, B.K. and Benouar, D. (2014), "Experimental identification of the six dof cgs, algeria, shaking table system", Smart Struct. Syst., Int. J., 13(1), 137-154. http://doi.org/10.12989/sss.2014.13.1.137   DOI
26 Basheer, I.A. and Hajmeer, M. (2000), "Artificial neural networks: Fundamentals, computing, design, and application", J. Microbiol. Methods, 43(1), 3-31. http://doi.org/10.1016/S0167-7012(00)00201-3   DOI
27 Oh, B.K., Glisic, B., Park, S.W. and Park, H.S. (2020), "Neural network-based seismic response prediction model for building structures using artificial earthquakes", J. Sound Vib., 468, 115109. http://doi.org/10.1016/j.jsv.2019.115109   DOI
28 Chen, X., Guan, Z., Spencer, B.F. and Li, J. (2018b), "A simplified procedure for estimating nonlinear seismic demand of tall piers", Eng. Struct., 174, 778-791. http://doi.org/10.1016/j.engstruct.2018.07.102   DOI
29 Mangalathu, S., Hwang, S.-H., Choi, E. and Jeon, J.-S. (2019), "Rapid seismic damage evaluation of bridge portfolios using machine learning techniques", Eng. Struct., 201, 109785. http://doi.org/10.1016/j.engstruct.2019.109785   DOI
30 Mitchell, J. (2014), "Machine learning methods in chemoinformatics", Wiley Interdiscipl. Rev.: Computat. Molecul. Sci., 4, 468-481. http://doi.org/10.1002/wcms.1183   DOI
31 Onat, O. and Gul, M. (2018), "Application of artificial neural networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart Struct. Syst., Int. J., 21(4), 521-535. http://doi.org/10.12989/sss.2018.21.4.521   DOI
32 Pang, Y., Zhou, X., He, W., Zhong, J. and Hui, O. (2021), "Uniform design-based Gaussian process regression for data-driven rapid fragility assessment of bridges", J. Struct. Eng., 147(4), 04021008. http://doi.org/10.1061/(asce)st.1943-541x.0002953   DOI
33 Saeidpour, A., Chorzepa, M.G., Christian, J. and Durham, S. (2018), "Parameterized fragility assessment of bridges subjected to hurricane events using metamodels and multiple environmental parameters", J. Infrastr. Syst., 24(4), 04018031. http://doi.org/10.1061/(asce)is.1943-555x.0000442   DOI
34 Zhang, L. and Suganthan, P.N. (2015b), "Oblique decision tree ensemble via multisurface proximal support vector machine", 45(10), 2165-2176. http://doi.org/10.1109/TCYB.2014.2366468   DOI
35 Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. http://doi.org/10.1023/a:1010933404324   DOI
36 Xu, J., Fermandois, G.A., Spencer, B.F., Jr. and Lu, X. (2018), "Stochastic optimisation of buckling restrained braced frames under seismic loading", Struct. Infrastr. Eng., 14(10), 1386-1401. http://doi.org/10.1080/15732479.2018.1443144   DOI
37 Chen, X. and Li, C. (2020), "Seismic performance of tall pier bridges retrofitted with lead rubber bearings and rocking foundation", Eng. Struct., 212, 110529. http://doi.org/10.1016/j.engstruct.2020.110529   DOI
38 Chen, Z.H., Ni, Y.Q. and Or, S.W. (2015), "Characterization and modeling of a self-sensing mr damper under harmonic loading", Smart Struct. Syst., Int. J., 15(4), 1103-1120. http://doi.org/10.12989/sss.2015.15.4.1103   DOI
39 Boggs, D. (1997), "Acceleration indexes for human comfort in tall buildings-Peak or RMS", CTBUH Monogr., 1-21.
40 Xie, Y., Ebad Sichani, M., Padgett, J.E. and DesRoches, R. (2020), "The promise of implementing machine learning in earthquake engineering: A state-of-the-art review", Earthq. Spectra, 36(4), 1769-1801. http://doi.org/10.1177/8755293020919419   DOI
41 Zhang, L. and Suganthan, P.N. (2015a), "Oblique decision tree ensemble via multisurface proximal support vector machine", IEEE Trans. Cybern., 45(10), 2165-2176. http://doi.org/10.1109/tcyb.2014.2366468   DOI
42 Wang, L., Li, J., Zhang, S., Zhang, X., Zhang, Q., Chan, M.F., Yang, R. and Sui, J. (2020), "Multi-task autoencoder based classification-regression model for patient-specific VMAT QA", Phys. Medic. Biol., 65(23), 235023. http://doi.org/10.1088/1361-6560/abb31c   DOI
43 Chen, X., Xiang, N., Li, J., and Guan, Z. (2020), "Influence of near-fault pulse-like motion characteristics on seismic performance of tall pier bridges with fragility analysis", J. Earthq. Eng., 1-22. http://doi.org/10.1080/13632469.2020.1751345   DOI
44 Chen, X., Li, J. and Liu, X. (2017), "Seismic performance of tall piers influenced by higher-mode effects of piers", J. Tongji Univ. (Natural Science), 45(02), 159-166.
45 Chen, X., Guan, Z., Li, J. and Spencer, B.F. (2018a), "Shake table tests of tall-pier bridges to evaluate seismic performance", J. Bridge Eng., 23(9), 04018058. http://doi.org/10.1061/(asce)be.1943-5592.0001264   DOI
46 Chen, P.-C., Hsu, S.-C., Zhong, Y.-J. and Wang, S.-J. (2019), "Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart Struct. Syst., Int. J., 23(1), 91-106. http://doi.org10.12989/sss.2019.23.1.091   DOI
47 Liu, Z. and Zhang, Z. (2017), "Artificial neural network based method for seismic fragility analysis of steel frames", KSCE J. Civil Eng., 22(2), 708-717. http://doi.org/10.1007/s12205-017-1329-8   DOI
48 Chen, X. (2020), "System fragility assessment of tall-pier bridges subjected to near-fault ground motions", J. Bridge Eng., 25(3), 04019143. http://doi.org/10.1061/(asce)be.1943-5592.0001526   DOI
49 Das, R. and Sengur, A. (2010), "Evaluation of ensemble methods for diagnosing of valvular heart disease", Expert Syst. Applicat., 37(7), 5110-5115. http://doi.org/10.1016/j.eswa.2009.12.085   DOI
50 Kiani, J., Camp, C. and Pezeshk, S. (2019), "On the application of machine learning techniques to derive seismic fragility curves", Comput. Struct., 218, 108-122. http://doi.org/10.1016/j.compstruc.2019.03.004   DOI
51 Murthy, S., Kasif, S. and Salzberg, S. (1996), "A system for induction of oblique decision trees", J. Artif. Intell. Res., 2, 1-32. http://doi.org/10.1613/jair.63   DOI
52 Duan, Y., Chen, Q., Zhang, H., Yun, C.B., Wu, S. and Zhu, Q. (2019), "Cnn-based damage identification method of tied-arch bridge using spatial-spectral information", Smart Struct. Syst., Int. J., 23(5), 507-520. http://doi.org/10.12989/sss.2019.23.5.507   DOI