Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.3.391

Predicting wind-induced structural response with LSTM in transmission tower-line system  

Xue, Jiayue (Department of Civil and Environmental Engineering, University of Utah)
Ou, Ge (Department of Civil and Environmental Engineering, University of Utah)
Publication Information
Smart Structures and Systems / v.28, no.3, 2021 , pp. 391-405 More about this Journal
Abstract
Wind-induced dynamic response of the nonlinear structure is critical for the structural safety and reliability. The traditional approaches for this response including observation or simulation focus on the structural health monitoring, the experiment, or finite element model development. However, all these approaches require high cost or computational investment. This paper proposes to predict the wind-induced dynamic response of the nonlinear structure with a novel deep learning approach, LSTM, and applies this in a structural lifeline system, the transmission tower-line system. By constructing the optimized LSTM architectures, the proposed method applies to both the linear structure, the single transmission tower and the nonlinear structure, the transmission tower-line system, with promising results for the dynamic and extreme response prediction. It can conclude that the layers and the hidden units have a strong impact on the LSTM prediction performance, and with proper training data set, the computational time can significantly decrease. A comparison surrogate model developed by CNN is also utilized to demonstrate the robustness of the LSTM-based surrogate model with limited data scale.
Keywords
dynamic response; nonlinear structure; LSTM; RNN; wind engineering;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Zhou, S. and Song, W. (2020), "Deep learning-based roadway crack classification using laser-scanned range images: A comparative study on hyperparameter selection", Automat. Constr., 114, 103171. https://doi.org/10.1016/j.autcon.2020.103171   DOI
2 Fang, C., Tang, H., Li, Y. and Zhang, J. (2020), "Stochastic response of a cable-stayed bridge under non-stationary winds and waves using different surrogate models", Ocean Eng., 199, 106967. https://doi.org/10.1016/j.oceaneng.2020.106967   DOI
3 Hu, G., Liu, L., Tao, D., Song, J., Tse, K.T. and Kwok, K.C.S. (2020), "Deep learning-based investigation of wind pressures on tall building under interference effects", J. Wind Eng. Indust. Aerodyn., 201, 104138. https://doi.org/10.1016/j.jweia.2020.104138   DOI
4 Tamura, Y., Matsui, M., Pagnini, L.C., Ishibashi, R. and Yoshida, A. (2002), "Measurement of wind-induced response of buildings using RTK-GPS", J. Wind Eng. Indust. Aerodyn., 90(12-15), 1783-1793. https://doi.org/10.1016/S0167-6105(02)00287-8   DOI
5 Zhu, L.D., Li, L., Xu, Y.L. and Zhu, Q. (2012), "Wind tunnel investigations of aerodynamic coefficients of road vehicles on bridge deck", J. Fluids Struct., 30, 35-50. https://doi.org/10.1016/j.jfluidstructs.2011.09.002   DOI
6 Mirowski, P. and Vlachos, A. (2015), "Dependency recurrent neural language models for sentence completion", In: The 53rd Annual Meeting of the Association for Computational Linguistics (ACL), Beijing, China, July.
7 Chen, F., Li, Q.S., Wu, J.R. and Fu, J.Y. (2011), "Wind effects on a long-span beam string roof structure: Wind tunnel test, field measurement and numerical analysis", J. Constr. Steel Res., 67(10), 1591-1604. https://doi.org/10.1016/j.jcsr.2011.04.003   DOI
8 Zhang, J.W. and Li, Q.S. (2018), "Field measurements of wind pressures on a 600 m high skyscraper during a landfall typhoon and comparison with wind tunnel test", J. Wind Eng. Indust. Aerodyn., 175, 391-407. https://doi.org/10.1016/j.jweia.2018.02.012   DOI
9 Cabada, R.Z., Rangel, H.R., Estrada, M.L.B. and Lopez, H.M.C. (2020), "Hyperparameter optimization in CNN for learningcentered emotion recognition for intelligent tutoring systems", Soft Comput., 24(10), 7593-7602. https://doi.org/10.1007/s00500-019-04387-4   DOI
10 Chen, G., Wu, J., Yu, J., Dharani, L.R. and Barker, M. (2001), "Fatigue assessment of traffic signal mast arms based on field test data under natural wind gusts", Transport. Res. Record, 1770(1), 188-194. https://doi.org/10.3141/1770-24   DOI
11 Davenport, A.G. (1961), "The spectrum of horizontal gustiness near the ground in high winds", Quarterly J. Royal Meteorol. Soc., 87(372), 194-211. https://doi.org/10.1002/qj.49708737208   DOI
12 Elman, J.L. (1990), "Finding structure in time", Cognitive Sci., 14(2), 179-211. https://doi.org/10.1016/0364-0213(90)90002-E   DOI
13 National Oceanic and Atmospheric Administration (NOAA) (2018), National hurricane center tropical cyclone report Hurricane Michael, National Hurricane Center, FL, USA. https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf
14 Jordan, M.I. (1986), "Attractor dynamics and parallelism in a connectionist sequential machine", Proceedings of the Eighth Annual Cognitive Science Society Conference, Lawrence Erlbaum Associates, August.
15 ASCE 7-98 (1999), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
16 Le, V. and Caracoglia, L. (2020), "A neural network surrogate model for the performance assessment of a vertical structure subjected to non-stationary, tornadic wind loads", Comput. Struct., 231, 106208. https://doi.org/10.1016/j.compstruc.2020.106208   DOI
17 Levitan, M.L., Mehta, K.C., Vann, W.P. and Holmes, J.D. (1991), "Field measurements of pressures on the Texas Tech building", J. Wind Eng. Indust. Aerodyn., 38(2-3), 227-234. https://doi.org/10.1016/0167-6105(91)90043-V   DOI
18 Micheli, L., Hong, J., Laflamme, S. and Alipour, A. (2020), "Surrogate models for high performance control systems in wind-excited tall buildings", Appl. Soft Comput., 90, 106133. https://doi.org/10.1016/j.asoc.2020.106133   DOI
19 Molinari, M., Pozzi, M., Zonta, D. and Battisti, L. (2011), "In-field testing of a steel wind turbine tower", Proceedings of the 28th IMAC, A Conference on Structural Dynamics, New York, USA, June.
20 Morchid, M. (2018), "Parsimonious memory unit for recurrent neural networks with application to natural language processing", Neurocomputing, 314, 48-64. https://doi.org/10.1016/j.neucom.2018.05.081   DOI
21 National Oceanic and Atmospheric Administration (NOAA) (2019), National hurricane center tropical cyclone report Hurricane Dorian, National Hurricane Center, FL, USA. https://www.nhc.noaa.gov/data/tcr/AL052019_Dorian.pdf
22 Ni, Y.Q., Ko, J.M., Hua, X.G. and Zhou, H.F. (2007), "Variability of measured modal frequencies of a cable-stayed bridge under different wind conditions", Smart Struct. Syst., Int. J., 3(3), 341-356. http://dx.doi.org/10.12989/sss.2007.3.3.341   DOI
23 Fu, X., Li, H.N. and Li, G. (2016), "Fragility analysis and estimation of collapse status for transmission tower subjected to wind and rain loads", Struct. Safety, 58, 1-10. https://doi.org/10.1016/j.strusafe.2015.08.002   DOI
24 He, J., Pan, F., Cai, C.S., Habte, F. and Chowdhury, A. (2018), "Finite-element modeling framework for predicting realistic responses of light-frame low-rise buildings under wind loads", Eng. Struct., 164, 53-69. https://doi.org/10.1016/j.engstruct.2018.01.034   DOI
25 Geurts, C., Vrouwenvelder, T., van Staalduinen, P. and Reusink, J. (1998), "Numerical modelling of rain-wind-induced vibration: Erasmus Bridge, Rotterdam", Struct. Eng. Int., 8(2), 129-135. https://doi.org/10.2749/101686698780489351   DOI
26 Ghoshal, A., Sundaresan, M.J., Schulz, M.J. and Pai, P.F. (2000), "Structural health monitoring techniques for wind turbine blades", J. Wind Eng. Indust. Aerodyn., 85(3), 309-324. https://doi.org/10.1016/S0167-6105(99)00132-4   DOI
27 Hamada, A., El Damatty, A.A., Hangan, H. and Shehata, A.Y. (2010), "Finite element modelling of transmission line structures under tornado wind loading", Wind Struct., Int. J., 13(5), 451-469. http://dx.doi.org/10.12989/was.2010.13.5.451   DOI
28 Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Computat., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735   DOI
29 Oh, B.K., Glisic, B., Kim, Y. and Park, H.S. (2019), "Convolutional neural network-based wind-induced response estimation model for tall buildings", Comput.-Aided Civil Infrastr. Eng., 34(10), 843-858. https://doi.org/10.1111/mice.12476   DOI
30 Park, H.S. and Oh, B.K. (2018), "Real-time structural health monitoring of a supertall building under construction based on visual modal identification strategy", Automat. Constr., 85, 273-289. https://doi.org/10.1016/j.autcon.2017.10.025   DOI
31 Park, E.C., Lee, S.H., Min, K.W., Chung, L., Lee, S.K., Cho, S.H., Yu, E. and Kang, K.S. (2008), "Design of an actuator for simulating wind-induced response of a building structure", Smart Struct. Syst., Int. J., 4(1), 85-98. http://dx.doi.org/10.12989/sss.2008.4.1.085   DOI
32 Sun, S.B., He, Y.Y., Zhou, S.D. and Yue, Z.J. (2017), "A datadriven response virtual sensor technique with partial vibration measurements using convolutional neural network", Sensors, 17(12), 2888. http://dx.doi.org/10.3390/s17122888   DOI
33 Park, J.H., Huynh, T.C., Lee, K.S. and Kim, J.T. (2016), "Wind and traffic-induced variation of dynamic characteristics of a cable-stayed bridge-benchmark study", Smart Struct. Syst., Int. J., 17(3), 491-522. http://dx.doi.org/10.12989/sss.2016.17.3.491   DOI
34 Reimers, N. and Gurevych, I. (2017). "Optimal hyperparameters for deep lstm-networks for sequence labeling tasks", In: arXiv preprint, arXiv:1707.06799.
35 Repetto, M.P. and Solari, G. (2010). "Wind-induced fatigue collapse of real slender structures", Eng. Struct., 32(12), 3888-3898. https://doi.org/10.1016/j.engstruct.2010.09.002   DOI
36 Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer Jr, B.F. and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart Struct. Syst., Int. J., 6(5_6), 439-459. https://doi.org/10.12989/sss.2010.6.5_6.439   DOI
37 Hopfield, J.J. (1982), "Neural networks and physical systems with emergent collective computational abilities", Proceedings of the National Academy of Sciences, 79(8), 2554-2558. https://doi.org/10.1073/pnas.79.8.2554   DOI
38 Hua, X.G., Chen, Z.Q., Lei, X., Wen, Q. and Niu, H.W. (2019), "Monitoring and control of wind-induced vibrations of hanger ropes of a suspension bridge", Smart Struct. Syst., Int. J., 23(6), 683-693. https://doi.org/10.12989/sss.2019.23.6.683   DOI
39 Hong, A.L., Ubertini, F. and Betti, R. (2011), "Wind analysis of a suspension bridge: identification and finite-element model simulation", J. Struct. Eng., 137(1), 133-142. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000279   DOI
40 Tort, C., Sahin, S. and Hasancebi, O. (2017), "Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER", Comput. Struct., 179, 75-94. https://doi.org/10.1016/j.compstruc.2016.10.017   DOI
41 Wong, K.Y., Lau, C.K. and Flint, A.R. (2000), "Planning and implementation of the structural health monitoring system for cable-supported bridges in Hong Kon", In: Nondestructive evaluation of highways, utilities, and pipelines IV. International Society for Optics and Photonics, Newport Beach, CA, USA, March.
42 Wu, R.T. and Jahanshahi, M.R. (2019), "Deep convolutional neural network for structural dynamic response estimation and system identification", J. Eng. Mech., 145(1), 04018125. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001556   DOI
43 Xue, J., Mohammadi, F., Li, X., Sahraei-Ardakani, M., Ou, G. and Pu, Z. (2020), "Impact of transmission tower-line interaction to the bulk power system during hurricane", Reliabil. Eng. Syst. Safety, 203, 107079. https://doi.org/10.1016/j.ress.2020.107079   DOI
44 Yin, W., Kann, K., Yu, M. and Schutze, H. (2017), "Comparative study of cnn and rnn for natural language processing", arXiv preprint, arXiv:1702.01923.
45 Zhang, R., Chen, Z., Chen, S., Zheng, J., Buyukozturk, O. and Sun, H. (2019), "Deep long short-term memory networks for nonlinear structural seismic response prediction", Comput. Struct., 220, 55-68. https://doi.org/10.1016/j.compstruc.2019.05.006   DOI