Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.2.289

Machine learning-based prediction and performance study of transparent soil properties  

Wang, Bo (School of Civil Engineering, Chongqing University)
Hou, Hengjun (School of Civil Engineering, Chongqing University)
Zhu, Zhengwei (School of Civil Engineering, Chongqing University)
Xiao, Wang (Shaoguan Construction Quality and Safety Center)
Publication Information
Smart Structures and Systems / v.28, no.2, 2021 , pp. 289-304 More about this Journal
Abstract
An indispensable process of geotechnical modeling with transparent soils involves analyzing images and soil property simulations. This study proposes an objective framework for quantitative analysis of the influential mechanism of three key factors, namely, different aggregate proportions (DAP), solvent ratio (SR), and solute solution ratio (SSR) on transparent soils' transparency and shear strength. 125 groups of transparent soil samples considering these three factors were prepared to investigate their impact on transparency and shear strength through Elastic Net regression. Spearman correlation analysis was performed for transparency and shear strength. Furthermore, by comparing the performance of XGBoost, GBDT, Random Forest, and SVR after hyperparameter tuning in predicting transparency and shear strength, XGBoost proved to be the optimal machine learning model with the lowest MSE of 0.0048 and 0.0306 and was innovatively adopted to analyze how various factors affect the transparency and shear strength, thus enhancing the interpretability of machine learning. A ranking system, according to the importance scores of XGBoost, shows that SSR was the most important factor affecting both shear strength and transparency of transparent soils, with importance scores being 0.45 and 0.57, respectively. Our study may shed light on the preparation and performance study of transparent soils.
Keywords
transparent soil; properties prediction; transparency; shear strength; machine learning;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kuo, Y.L., Jaksa, M.B., Lyamin, A.V. and Kaggwa, W.S. (2009), "ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil", Comput. Geotech., 36(3), 503-516. https://doi.org/10.1016/j.compgeo.2008.07.002   DOI
2 Li, T., Xu, M., Zhu, C., Yang, R., Wang, Z. and Guan, Z. (2019), "A deep learning approach for multi-frame in-loop filter of HEVC", IEEE Transact. Image Process., 28(11), 5663-5678. https://doi.org/10.1109/TIP.2019.2921877   DOI
3 Liang, S., Foong, L.K. and Lyu, Z. (2020), "Determination of the friction capacity of driven piles using three sophisticated search schemes", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01118-4   DOI
4 Stanier, S.A. (2012), "Modelling the behaviour of helical screw piles", Ph.D. Thesis; University of Sheffield, Department of Civil and Structural Engineering.
5 Lo, H.C.J., Tabe, K., Iskander, M. and Yoon, S.H. (2010), "A transparent water-based polymer for simulating multiphase flow", Geotech. Test. J., 33(1), 1-13. https://doi.org/10.1520/GTJ102375   DOI
6 Sun, L., Yang, Z., Jin, Q. and Yan, W. (2020), "Effect of axial compression ratio on seismic behavior of GFRP reinforced concrete columns", Int. J. Struct. Stabil. Dyn., 20(06), 2040004. https://doi.org/10.1142/S0219455420400040   DOI
7 Bai, B., Guo, Z., Zhou, C., Zhang, W. and Zhang, J. (2021), "Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering", Inform. Sci., 546, 42-59. https://doi.org/10.1016/j.ins.2020.07.069   DOI
8 Xu, M., Li, T., Wang, Z., Deng, X., Yang, R. and Guan, Z. (2018), "Reducing complexity of HEVC: A deep learning approach", IEEE Transact. Image Process., 27(10), 5044-5059. https://doi.org/10.1109/TIP.2018.2847035   DOI
9 Ma, H.J., Xu, L.X. and Yang, G.H. (2019), "Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems", IEEE Transact. Cybernetics, 51(4), 1913-1928. https://doi.org/10.1109/TCYB.2018.2889679   DOI
10 Abedini, M. and Zhang, C. (2021), "Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique", Compos. Struct., 260, 113473. https://doi.org/10.1016/j.compstruct.2020.113473   DOI
11 Bhattacharya, S., Maddikunta, P.K.R., Kaluri, R., Singh, S., Gadekallu, T.R., Alazab, M. and Tariq, U. (2020), "A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU", Electronics, 9(2), 219. https://doi.org/10.3390/electronics9020219   DOI
12 Lv, X., Li, N., Xu, X. and Yang, Y. (2020), "Understanding the emergence and development of online travel agencies: a dynamic evaluation and simulation approach", Internet Res., 30(6), 1783-1810. https://doi.org/10.1108/INTR-11-2019-0464   DOI
13 Zhang, C., Gholipour, G. and Mousavi, A.A. (2020c), "Blast loads induced responses of RC structural members: State-of-the-art review", Compos. Part B: Eng., 108066. https://doi.org/10.1016/j.compositesb.2020.108066   DOI
14 Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B. and Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Environ. Manage., 260, 109867. https://doi.org/10.1016/j.jenvman.2019.109867   DOI
15 Nehdi, M., El Chabib, H. and Said, A. (2006), "Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks", Smart Struct. Syst., Int. J., 2(1), 81-100. https://doi.org/10.12989/sss.2006.2.1.081   DOI
16 Ni, Q., Hird, C.C. and Guymer, I. (2010), "Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry", Geotechnique, 60(2), 121-132. https://doi.org/10.1680/geot.8.P.052   DOI
17 Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M. and Webster, S. (2000), "An investigation of machine learning based prediction systems", J. Syst. Software, 53(1), 23-29. https://doi.org/10.1016/S0164-1212(00)00005-4   DOI
18 Melucci, M. (2009), "Weighted rank correlation in information retrieval evaluation", In: Asia Information Retrieval Symposium, pp. 75-86. https://doi.org/10.1007/978-3-642-04769-5_7   DOI
19 Sharma, S., Ahmed, S., Naseem, M., Alnumay, W.S., Singh, S. and Cho, G.H. (2021), "A Survey on Applications of Artificial Intelligence for Pre-Parametric Project Cost and Soil Shear-Strength Estimation in Construction and Geotechnical Engineering", Sensors, 21(2), 463. https://doi.org/10.3390/s21020463   DOI
20 Yan, J., Pu, W., Zhou, S., Liu, H. and Greco, M.S. (2020), "Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks", IEEE Transact. Signal Process., 68, 4055-4068. https://doi.org/10.1109/TSP.2020.3007313   DOI
21 Xu, F., Foong, L.K. and Lyu, Z. (2020), "A novel search scheme based on the social behavior of crow flock for feed-forward learning improvement in predicting the soil compression coefficient", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01119-3   DOI
22 Breiman, L. (2001), "Random forests", Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324   DOI
23 Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Finetuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 37, 701-712. https://doi.org/10.1007/s00366-019-00850-w   DOI
24 Chahnasir, E.S., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamad, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., Int. J., 22(4), 413-424. https://doi.org/10.12989/sss.2018.22.4.413   DOI
25 Yang, Y., Yao, J., Wang, C., Gao, Y., Zhang, Q., An, S. and Song, W. (2015), "New pore space characterization method of shale matrix formation by considering organic and inorganic pores", J. Natural Gas Sci. Eng., 27, 496-503. https://doi.org/10.1016/j.jngse.2015.08.017   DOI
26 Pourghasemi, H.R. and Rahmati, O. (2018), "Prediction of the landslide susceptibility: Which algorithm, which precision?", Catena, 162, 177-192. https://doi.org/10.1016/j.catena.2017.11.022   DOI
27 Yue, H., Wang, H., Chen, H., Cai, K. and Jin, Y. (2020), "Automatic detection of feather defects using lie group and fuzzy fisher criterion for shuttlecock production", Mech. Syst. Signal Process., 141, 106690. https://doi.org/10.1016/j.ymssp.2020.106690   DOI
28 Zhang, C. and Wang, H. (2020), "Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification", Struct. Control Health Monitor., 27(6), e2543. https://doi.org/10.1002/stc.2543   DOI
29 Zhang, X., Nguyen, H., Bui, X.N., Tran, Q.H., Nguyen, D.A., Bui, D.T. and Moayedi, H. (2019b), "Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost", Natural Resour. Res., 29(2), 711-721. https://doi.org/10.1007/s11053-019-09492-7   DOI
30 Pham, B.T., Qi, C., Ho, L.S., Nguyen-Thoi, T., Al-Ansari, N., Nguyen, M.D., Nguyen, H.D., Ly, H.B., Le, H.V. and Prakash, I. (2020), "A novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soil", Sustainability, 12(6), 2218. https://doi.org/10.3390/su12062218   DOI
31 Reddy, T., Bhattacharya, S., Maddikunta, P.K.R., Hakak, S., Khan, W.Z., Bashir, A.K., Jolfaei, A. and Tariq, U. (2020b), "Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset", Multimedia Tools Applicat., 1-25. https://doi.org/10.1007/s11042-020-09988-y   DOI
32 Vapnik, V. (2013), The Nature of Statistical Learning Theory, Springer Science & Business Media.
33 Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0   DOI
34 Chou, J.S., Yang, K.H. and Lin, J.Y. (2016), "Peak shear strength of discrete fiber-reinforced soils computed by machine learning and metaensemble methods", J. Comput. Civil Eng., 30(6), 04016036. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000595   DOI
35 Ding, L., Huang, L., Li, S., Gao, H., Deng, H., Li, Y. and Liu, G. (2020), "Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain", IEEE Transact. Robotics, 36(3), 894-909. https://doi.org/10.1109/TRO.2020.2981822   DOI
36 Zhang, W., Tang, Z., Yang, Y. and Wei, J. (2021), "Assessment of FRP-concrete interfacial debonding with coupled mixed-mode cohesive zone model", J. Compos. Constr., 25(2), 04021002. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001114   DOI
37 Yang, J., Li, S., Wang, Z., Dong, H., Wang, J. and Tang, S. (2020a), "Using deep learning to detect defects in manufacturing: a comprehensive survey and current challenges", Materials, 13(24), 5755. https://doi.org/10.3390/ma13245755   DOI
38 Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567   DOI
39 Zhang, C., Abedini, M. and Mehrmashhadi, J. (2020a), "Development of pressure-impulse models and residual capacity assessment of RC columns using high fidelity Arbitrary Lagrangian-Eulerian simulation", Eng. Struct., 224, 111219. https://doi.org/10.1016/j.engstruct.2020.111219   DOI
40 Zhang, C., Gholipour, G. and Mousavi, A.A. (2020b), "State-ofthe-art review on responses of RC structures subjected to lateral impact loads", Arch. Computat. Methods Eng., 28(4), 2477-2507. https://doi.org/10.1007/s11831-020-09467-5   DOI
41 Zhao, H., Ge, L. and Luna, R. (2010), "Low viscosity pore fluid to manufacture transparent soil", Geotech. Test. J., 33(6), 463-468. https://doi.org/10.1520/GTJ102607   DOI
42 Ju, Y., Shen, T. and Wang, D. (2020), "Bonding behavior between reactive powder concrete and normal strength concrete", Constr. Build. Mater., 242, 118024. https://doi.org/10.1016/j.conbuildmat.2020.118024   DOI
43 Friedman, J.H. (2001), "Greedy function approximation: a gradient boosting machine", Annals of statistics, 1189-1232.
44 Gadekallu, T.R., Rajput, D.S., Reddy, M.P.K., Lakshmanna, K., Bhattacharya, S., Singh, S., Jolfaei, A. and Alazab, M. (2020), "A novel PCA-whale optimization-based deep neural network model for classification of tomato plant diseases using GPU", J. Real-Time Image Process., 1-14. https://doi.org/10.1007/s11554-020-00987-8   DOI
45 Lv, Z. and Qiao, L. (2020), "Deep belief network and linear perceptron based cognitive computing for collaborative robots", Appl. Soft Comput., 92, 106300. https://doi.org/10.1016/j.asoc.2020.106300   DOI
46 Ezzein, F.M. and Bathurst, R.J. (2011), "A transparent sand for geotechnical laboratory modeling", Geotech. Test. J., 34(6), 590-601. https://doi.org/10.1520/GTJ103808   DOI
47 Ma, H.J. and Xu, L.X. (2020), "Decentralized adaptive faulttolerant control for a class of strong interconnected nonlinear systems via graph theory", IEEE Transact. Automatic Control, 66(7), 3227-3234. https://doi.org/10.1109/TAC.2020.3014292   DOI
48 Ma, H.J., Yang, G.H. and Chen, T. (2020), "Event-triggered optimal dynamic formation of heterogeneous affine nonlinear multi-agent systems", IEEE Transact. Automatic Control, 66(2), 497-512. https://doi.org/10.1109/TAC.2020.2983108   DOI
49 Ezzein, F.M. and Bathurst, R.J. (2014), "A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil", Geotext. Geomembr., 42(3), 246-255. https://doi.org/10.1016/j.geotexmem.2014.04.003   DOI
50 He, S., Guo, F. and Zou, Q. (2020), "MRMD2. 0: a python tool for machine learning with feature ranking and reduction", Current Bioinformat., 15(10), 1213-1221. https://doi.org/10.2174/1574893615999200503030350   DOI
51 Kiran, S., Lal, B. and Tripathy, S. (2016), "Shear strength prediction of soil based on probabilistic neural network", Indian J. Sci. Technol., 9(41). https://doi.org/10.17485/ijst/2016/v9i41/99188   DOI
52 Li, B.H., Liu, Y., Zhang, A.M., Wang, W.H. and Wan, S. (2020a), "A survey on blocking technology of entity resolution", J. Comput. Sci. Technol., 35(4), 769-793. https://doi.org/10.1007/s11390-020-0350-4   DOI
53 Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. and Wang, Y. (2018), "Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil", Chemosphere, 194, 495-503. https://doi.org/10.1016/j.chemosphere.2017.12.025   DOI
54 Delicado, P. and Smrekar, M. (2009), "Measuring non-linear dependence for two random variables distributed along a curve", Statist. Comput., 19(3), 255. https://doi.org/10.1007/s11222-008-9090-y   DOI
55 Fu, X. and Yang, Y. (2020), "Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks", Reliabil. Eng. Syst. Safety, 197, 106815. https://doi.org/10.1016/j.ress.2020.106815   DOI
56 Zhang, K., Wang, Q., Chao, L., Ye, J., Li, Z., Yu, Z., Yang, T. and Ju, Q. (2019a), "Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semihumid transitional zone in China", J. Hydrol., 574, 903-914. https://doi.org/10.1016/j.jhydrol.2019.04.087   DOI
57 Ma, H.J. and Yang, G.H. (2015), "Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections", IEEE Transact. Automatic Control, 61(11), 3240-3255. https://doi.org/10.1109/TAC.2015.2507864   DOI
58 Yang, W., Zhao, Y., Wang, D., Wu, H., Lin, A. and He, L. (2020b), "Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin'anjiang river in Huangshan, China", Int. J. Environ. Res. Public Health, 17(8), 2942. https://doi.org/10.3390/ijerph17082942   DOI
59 Ye, X., Moayedi, H., Khari, M. and Foong, L.K. (2020), "Metaheuristic-hybridized multilayer perceptron in slope stability analysis", Smart Struct. Syst., Int. J., 26(3), 263-275. https://doi.org/10.12989/sss.2020.26.3.263   DOI
60 Moavenian, M.H., Nazem, M., Carter, J.P. and Randolph, M.F. (2016), "Numerical analysis of penetrometers free-falling into soil with shear strength increasing linearly with depth", Comput. Geotech., 72, 57-66. https://doi.org/10.1016/j.compgeo.2015.11.002   DOI
61 Samui, P. (2008), "Prediction of friction capacity of driven piles in clay using the support vector machine", Can. Geotech. J., 45(2), 288-295. https://doi.org/10.1139/T07-072   DOI
62 Padmini, D., Ilamparuthi, K. and Sudheer, K.P. (2008), "Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models", Comput. Geotech., 35(1), 33-46. https://doi.org/10.1016/j.compgeo.2007.03.001   DOI
63 Reddy, G.T., Reddy, M.P.K., Lakshmanna, K., Rajput, D.S., Kaluri, R. and Srivastava, G. (2020a), "Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis", Evolution. Intell., 13(2), 185-196. https://doi.org/10.1007/s12065-019-00327-1   DOI
64 Rong, G., Alu, S., Li, K., Su, Y., Zhang, J., Zhang, Y. and Li, T. (2020), "Rainfall Induced Landslide Susceptibility Mapping Based on Bayesian Optimized Random Forest and Gradient Boosting Decision Tree Models-A Case Study of Shuicheng County, China", Water, 12(11), 3066. https://doi.org/10.3390/w12113066   DOI
65 Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. https://doi.org/10.12989/sss.2014.14.5.785   DOI
66 He, H., Bai, Y., Garcia, E.A. and Li, S. (2008), "ADASYN: Adaptive synthetic sampling approach for imbalanced learning", Proceedings of 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, June, pp. 1322-1328. https://doi.org/10.1109/IJCNN.2008.4633969   DOI
67 Zou, H. and Hastie, T. (2005), "Regularization and variable selection via the elastic net", Journal of the royal statistical society: series B (statistical methodology), 67(2), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x   DOI
68 Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y. and Cho, H. (2015), "Xgboost: extreme gradient boosting", R package version 0.4-2 1-4.
69 Chen, H., Qiao, H., Xu, L., Feng, Q. and Cai, K. (2019), "A fuzzy optimization strategy for the implementation of RBF LSSVR model in vis-NIR analysis of pomelo maturity", IEEE Transact. Indust. Inform., 15(11), 5971-5979. https://doi.org/10.1109/TII.2019.2933582   DOI
70 Das, S., Samui, P., Khan, S. and Sivakugan, N. (2011), "Machine learning techniques applied to prediction of residual strength of clay", Open Geosciences, 3(4), 449-461. https://doi.org/10.2478/s13533-011-0043-1   DOI
71 Iskander, M. (2010), Modelling with transparent soils: Visualizing soil structure interaction and multi phase flow, non-intrusively, Springer Science & Business Media.
72 Iskander, M.G., Liu, J. and Sadek, S. (2002), "Transparent amorphous silica to model clay", J. Geotech. Geoenviron. Eng., 128(3), 262-273. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:3(262)   DOI
73 Kanevski, M., Pozdnukhov, A. and Timonin, V. (2008), "Machine learning algorithms for geospatial data. Applications and software tools", Proceedings of the 4th International Congress on Environmental Modelling and Software, Barcelona, Catalonia, Spain, July.
74 Kanungo, D.P., Sharma, S. and Pain, A. (2014), "Artificial Neural Network (ANN) and Regression Tree (CART) applications for the indirect estimation of unsaturated soil shear strength parameters", Frontiers Earth Sci., 8(3), 439-456. https://doi.org/10.1007/s11707-014-0416-0   DOI
75 Li, C., Sun, L., Xu, Z., Wu, X., Liang, T. and Shi, W. (2020b), "Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring", Int. J. Struct. Stabil. Dyn., 20(06), 2040011. https://doi.org/10.1142/S0219455420400118   DOI