1 |
AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech., A/Solids, 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008
DOI
|
2 |
Amir, S., Khorasani, M. and BabaAkbar-Zarei, H. (2018), "Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory", J. Sandw. Struct. Mater., 22(7), 2186-2209. https://doi.org/10.1177/1099636218795385
DOI
|
3 |
Torabi, K., Afshari, H. and Aboutalebi, F.H. (2019), "Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates", J. Sandw. Struct. Mater., 21(8), 2887-2920. https://doi.org/10.1177/1099636217728746
DOI
|
4 |
Fallah, N. and Ebrahimnejad, M. (2014), "Finite volume analysis of adaptive beams with piezoelectric sensors and actuators", Appl. Mathe. Modell., 38(2), 722-737. https://doi.org/10.1016/j.apm.2013.07.004
DOI
|
5 |
Sakar, G. and Bolat, F.C. (2015), "The free vibration analysis of honeycomb sandwich beam using 3D and continuum model", Int. J. Mech. Aerosp. Indust. Mechatron. Manuf. Eng., 9(6), 1077-1081.
|
6 |
Amir, S., Arshid, E. and Khoddami Maraghi, Z. (2020a), "Free vibration analysis of magneto-rheological smart annular threelayered plates subjected to magnetic field in viscoelastic medium", Smart Struct. Syst., Int. J., 25(5), 581-592. https://doi.org/10.12989/sss.2020.25.5.581
DOI
|
7 |
Nguyen, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Methods Appl. Mech. Eng., 326, 376-401. https://doi.org/10.1016/j.cma.2017.07.024
DOI
|
8 |
Phung-Van, P., Lorenzis, L. De, Thai, C.H., Abdel-Wahab, M. and Nguyen-Xuan, H. (2015), "Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements", Computat. Mater. Sci., 96, 495-505. https://doi.org/10.1016/j.commatsci.2014.04.068
DOI
|
9 |
Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stabil. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118
DOI
|
10 |
Xie, K., Wang, Y., Fan, X. and Fu, T. (2019), "Nonlinear free vibration analysis of functionally graded beams by using different shear deformation theories", Appl. Mathe. Modell., 77, 1860-1880. https://doi.org/10.1016/j.apm.2019.09.024
DOI
|
11 |
Yongqiang, L. and Dawei, Z. (2009), "Free flexural vibration analysis of symmetric rectangular honeycomb panels using the improved Reddy's third-order plate theory", Compos. Struct., 88(1), 33-39. https://doi.org/10.1016/j.compstruct.2008.03.033
DOI
|
12 |
Dariushi, S. and Sadighi, M. (2015), "Analysis of composite sandwich beam with enhanced nonlinear high order sandwich panel theory", Modares Mech. Eng., 14(16), 1-8.
|
13 |
Arshid, E., Amir, S. and Loghman, A. (2020a), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 109963622095502. https://doi.org/10.1177/1099636220955027
DOI
|
14 |
Arshid, E., Arshid, H., Amir, S. and Mousavi, S.B. (2021), "Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory", Arch. Civil Mech. Eng., 21(1), 6. https://doi.org/10.1007/s43452-020-00150-x
DOI
|
15 |
Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/J.TWS.2016.05.025
DOI
|
16 |
Frostig, Y., Baruch, M., Vilnay, O. and Sheinman, I. (1992), "High-order theory for sandwich-beam behavior with transversely flexible core", J. Eng. Mech., 118(5), 1026-1043. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026)
DOI
|
17 |
Nguyen, H.X., Nguyen, T.N., Bordas, S.P.A. and Vo, T.P. (2016), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Methods Appl. Mech. Eng., 313, 904-940. https://doi.org/10.1016/j.cma.2016.10.002
DOI
|
18 |
Yue, Y.M., Xu, K.Y. and Chen, T. (2016), "A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects", Compos. Struct., 136, 278-286. https://doi.org/10.1016/j.compstruct.2015.09.046
DOI
|
19 |
Yiqi, M. and Yiming, F. (2010), "Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate", J. Sound Vib., 329(11), 2015-2028. https://doi.org/10.1016/j.jsv.2010.01.005
DOI
|
20 |
Ezzat, M.A., El Karamany, A.S. and El-Bary, A.A. (2017), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., Int. J., 19(5), 539-551. https://doi.org/10.12989/sss.2017.19.5.539
DOI
|
21 |
Fu, M. and Yin, J. (1999), "Equivalent elastic parameters of the honeycomb core", Acta Mechanica Sinica, 15(1), 113-118.
|
22 |
Fu, Y., Wang, J. and Mao, Y. (2012), "Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment", Appl. Mathe. Modell., 36(9), 4324-4340. https://doi.org/10.1016/j.apm.2011.11.059
DOI
|
23 |
Cheng, S., Qiao, P., Chen, F., Fan, W. and Zhu, Z. (2016), "Free vibration analysis of fiber-reinforced polymer honeycomb sandwich beams with a refined sandwich beam theory", J. Sandw. Struct. Mater., 18(2), 242-260. https://doi.org/10.1177/1099636215619841
DOI
|
24 |
Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., Int. J., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343
DOI
|
25 |
Frostig, Y. and Thomsen, O.T. (2004), "High-order free vibration of sandwich panels with a flexible core", Int. J. Solids Struct., 41, 1697-1724. https://doi.org/10.1016/j.ijsolstr.2003.09.051
DOI
|
26 |
Jedari Salami, S., Dariushi, S., Sadighi, M. and Shakeri, M. (2016), "An advanced high-order theory for bending analysis of moderately thick faced sandwich beams", Eur. J. Mech. A/Solids, 56, 1-11. https://doi.org/10.1016/j.euromechsol.2015.10.003
DOI
|
27 |
Ebrahimi, F. and Daman, M. (2017), "Nonlocal thermo-electromechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam", Smart Struct. Syst, Int. J., 20(3), 351-368. https://doi.org/10.12989/sss.2017.20.3.351
DOI
|
28 |
Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019), "The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., Int. J., 70(1), 97-112. https://doi.org/10.12989/sem.2019.70.1.097
DOI
|
29 |
Amir, S., Arshid, E., Khoddami Maraghi, Z., Loghman, A. and Ghorbanpour Arani, A. (2020b), "Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate", J. Vib. Control, 26(17-18), 1523-1537. https://doi.org/10.1177/1077546319899203
DOI
|
30 |
Hong, C.C. (2013), "Thermal vibration of magnetostrictive functionally graded material shells", Eur. J. Mech. A/Solids, 40, 114-122. https://doi.org/10.1016/j.euromechsol.2013.01.010
DOI
|
31 |
Lorna, J. and Gibson, M.F.A. (1989), "Cellular solids", J. Biomech. https://doi.org/10.1016/0021-9290(89)90056-0
DOI
|
32 |
Ghorbanpour Arani, A., Arani, H.K. and Maraghi, Z.K. (2016b), "Vibration analysis of sandwich composite micro-plate under electro-magneto-mechanical loadings", Appl. Mathe. Modell., 40(23-24), 10596-10615. https://doi.org/10.1016/j.apm.2016.07.033
DOI
|
33 |
Hadji, L. (2017), "Analysis of functionally graded plates using a sinusoidal shear deformation theory", Smart Struct. Syst, Int. J., 19(4), 441-448. https://doi.org/10.12989/sss.2017.19.4.441
DOI
|
34 |
Khalili, S.M.R., Kheirikhah, M.M. and Fard, K.M. (2013), "Biaxial wrinkling analysis of composite-faced sandwich plates with soft core using improved high-order theory", Eur. J. Mech. A/Solids, 43, 68-77. https://doi.org/10.1016/j.euromechsol.2013.08.002
DOI
|
35 |
Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. Part B: Eng., 94, 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030
DOI
|
36 |
Ghorbanpour Arani, A., BabaAkbar Zarei, H. and Haghparast, E. (2018), "Vibration response of viscoelastic sandwich plate with magnetorheological fluid core and functionally gradedpiezoelectric nanocomposite face sheets", J. Vib. Control, 24(21), 17-21. https://doi.org/10.1177/1077546317747501
DOI
|
37 |
Kheirikhah, M.M., Khalili, S.M.R. and Fard, K.M. (2012a), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", Eur. J. Mech. A/Solids, 31(1), 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003
DOI
|
38 |
Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012b), "Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory", Struct. Eng. Mech., Int. J., 44(1), 15-34. https://doi.org/10.12989/sem.2012.44.1.015
DOI
|
39 |
Zhang, Z.J., Han, B., Zhang, Q.C. and Jin, F. (2017), "Free vibration analysis of sandwich beams with honeycombcorrugation hybrid cores", Compos. Struct., 171, 335-344. https://doi.org/10.1016/j.compstruct.2017.03.045
DOI
|
40 |
Nezami, M. and Gholami, B. (2015), "Active flutter control of a supersonic honeycomb sandwich beam resting on elastic foundation with piezoelectric sensor/actuator pair", Int. J. Struct. Stabil. Dyn., 15(3), p. 1450052. https://doi.org/10.1142/s0219455414500527
DOI
|
41 |
Arshid, E., Amir, S. and Loghman, A. (2020b), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656
DOI
|
42 |
Moradi Dastjerdi, R., Payganeh, G., Rajabizadeh Mirakabad, S. and Jafari Mofrad-Taheri, M. (2016), "Static and free vibration analyses of functionally graded nano-composite plates reinforced by wavy carbon nanotubes resting on a Pasternak elastic foundation", Mech. Adv. Compos. Struct., 3, 123-135. https://doi.org/10.22075/macs.2016.474
DOI
|
43 |
Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2016), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandw. Struct. Mater., 19(6), 736-769. https://doi.org/10.1177/1099636216643425
DOI
|
44 |
Abazid, M.A. and Sobhy, M. (2018), "Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory", Microsyst. Technol., 24(2), 1227-1245. https://doi.org/10.1007/s00542-017-3492-8
DOI
|
45 |
Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397
DOI
|
46 |
Amir, S., Soleimani-Javid, Z. and Arshid, E. (2019), "Sizedependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT", ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 99(9), 1-21. https://doi.org/10.1002/zamm.201800334
DOI
|
47 |
Malekzadeh, K., Khalili, M.R. and Mittal, R.K. (2005), "Local and global damped vibrations of plates with a viscoelastic soft flexible core: An improved high-order approach", J. Sandw. Struct. Mater., 7(5), 431-456. https://doi.org/10.1177/1099636205053748
DOI
|
48 |
Zhang, R., Ni, Y.Q., Duan, Y. and Ko, J.M. (2019), "Development of a full-scale magnetorheological damper model for open-loop cable vibration control", Smart Struct. Syst., Int. J., 23(6), 553-564. https://doi.org/10.12989/sss.2019.23.6.553
DOI
|
49 |
Ghorbanpour Arani, A., Jafari, G.S. and Kolahchi, R. (2016a), "Vibration analysis of nanocomposite microplates integrated with sensor and actuator layers using surface SSDPT", 39(6), 1-14. https://doi.org/10.1002/pc.24150
DOI
|
50 |
Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Methods Appl. Mech. Eng., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011
DOI
|
51 |
Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007
DOI
|
52 |
Arefi, M. and Zenkour, A.M. (2017), "Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071
DOI
|