Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.2.181

Performance of cement composite embeddable sensors for strain-based health monitoring of in-service structures  

Rao, Rajani Kant (Academy of Scientific and Innovative Research (AcSIR))
Sindu, B.S. (Special and Multifunctional Structures Laboratory, CSIR-Structural Engineering Research Centre)
Sasmal, Saptarshi (Academy of Scientific and Innovative Research (AcSIR))
Publication Information
Smart Structures and Systems / v.28, no.2, 2021 , pp. 181-193 More about this Journal
Abstract
There is a growing need to develop sensors which can be embedded into the structures during the construction stage itself for developing smart structures. It is preferred to develop these kinds of sensors with the material same as that of material used in construction for the sake of compatibility and better capturing the actual state of distress in the structure. Towards this, in this study cement based piezo-resistive sensors are developed with the help of conductive nano-fillers (Carbon Nanotubes (CNTs)). Since the sensors are cement based, and porous in nature, the characteristics of the sensor will vary due to water penetration into the sensor. As the structures with such embedded sensors have to perform for years, understanding the variations in the characteristics of the sensor due to pore structure is very important. In this regard, the conductivity of the sensor is assessed where the effect of dosage of CNTs, functionalization of CNTs, type of electrical conductivity measurement (both DC and AC) and pore water are the parameters. The strain sensitivity of the sensors under cyclic stress is also investigated and reported in the present study. The findings of this study will help in developing continuous health monitoring strategies using highly sensitive embeddable cement-based nanocomposites.
Keywords
carbon nanotubes; cement-based sensors; electrical resistivity; impedance; long-term performance; SHM; tunnelling length;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ryu, D., Loh, K.J., Ireland, R., Karimzada, M., Yaghmaie, F. and Gusman, A.M. (2011), "In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing", Smart Struct. Syst., Int. J., 8(5), 471-486. https://doi.org/10.12989/sss.2011.8.5.471   DOI
2 Sasmal, S., Ravivarman, N. and Sindu, B.S. (2017a), "Synthesis, characterisation and performance of piezo-resistive cementitious nanocomposites", Cement Concrete Compos., 75, 10-21. https://doi.org/10.1016/j.cemconcomp.2016.10.008   DOI
3 Solgaard, A.O.S., Geiker, M., Edvardsen, C. and Kuter, A. (2014), "Observations on the electrical resistivity of steel fibre reinforced concrete", Mater. Struct., 47(1-2), 335-350. https://doi.org/10.1617/s11527-013-0064-y   DOI
4 Spragg, R., Villani, C., Snyder, K., Bentz, D., Bullard, J.W. and Weiss, J. (2013), "Factors that influence electrical resistivity measurements in cementitious systems", Transp. Res. Rec., 2342(1), 90-98. https://doi.org/10.3141/2342-11   DOI
5 Wan, H.P., Dong, G.S. and Luo, Y. (2021), "Compressive sensing of wind speed data of large-scale spatial structures with dedicated dictionary using time-shift strategy", Mech. Syst. Signal Process., 157, 107685. https://doi.org/10.1016/j.ymssp.2021.107685   DOI
6 Chen, B., Wu, K. and Yao, W, (2004), "Conductivity of carbon fiber reinforced cement-based composites", Cement Concrete Compos., 26(4), 291-297. https://doi.org/10.1016/S0958-9465(02)00138-5   DOI
7 Chung, D.D.L. (2004), "Electrically conductive cement-based materials", Adv. Cement Res. 16(4), 167-176. https://doi.org/10.1680/adcr.2004.16.4.167   DOI
8 Wen, S. and Chung, D.D.L. (2001), "Effect of stress on the electric polarization in cement", Cement Concrete Res., 31(2), 291-295. https://doi.org/10.1016/S0008-8846(00)00412-9   DOI
9 Yoo, D.Y., You, I., and Lee, S.J. (2018b), "Electrical and piezoresistive sensing capacities of cement paste with multiwalled carbon nanotubes", Arch. Civil Mech. Eng., 18(2), 371-384. https://doi.org/10.1016/j.acme.2017.09.007   DOI
10 Yu, X. and Kwon, E. (2009), "A carbon nanotube/cement composite with piezoresistive properties", Smart Mater. Struct., 18(5), 055010. https://doi.org/10.1088/0964-1726/18/5/055010   DOI
11 Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527   DOI
12 Tyson, B.M., Abu Al-Rub, R.K., Yazdanbakhsh, A. and Grasley, Z. (2011), "Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials", J. Mater. Civil Eng., 23(7), 1028-1035. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000266   DOI
13 Yoo, D.Y., You, I., Youn, H. and Lee, S.J. (2018a), "Electrical and piezoresistive properties of cement composites with carbon nanomaterials", J. Compos. Mater., 52(24), 3325-3340. https://doi.org/10.1177/0021998318764809   DOI
14 Coppola, L., Buoso, A. and Corazza, F. (2011), "Electrical properties of carbon nanotubes cement composites for monitoring stress conditions in concrete structures", Appl. Mech. Mater., 82, 118-123. https://doi.org/10.4028/www.scientific.net/AMM.82.118   DOI
15 Guemes, A., Fernandez-Lopez, A., Pozo, A.R. and Sierra-Perez, J. (2020), "Structural health monitoring for advanced composite structures: a review", J. Compos. Sci., 4(1), 13   DOI
16 Han, B., Yu, X. and Kwon, E. (2009), "A self-sensing carbon nanotube/cement composite for traffic monitoring", Nanotechnology, 20(44) 445501. https://doi.org/10.1088/0957-4484/20/44/445501   DOI
17 Han, B., Yu, X. and Ou, J. (2010), "Effect of water content on the piezoresistivity of MWNT/cement composites", J. Mater. Sci., 45(14), 3714-3719. https://doi.org/10.1007/s10853-010-4414-7   DOI
18 Han, B., Yu, X. and Ou, J. (2011), "Multifunctional and smart carbon nanotube reinforced cement-based materials", In: Nanotechnology in Civil Infrastructure, pp. 1-47, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16657-0_1
19 Hou, T.C. (2008), "Wireless and electromechanical approaches for strain sensing and crack detection in fiber reinforced cementitious materials", Doctoral dissertation 2008; The University of Michigan, USA. http://hdl.handle.net/2027.42/61606
20 Zhang, L., Ding, S., Han, B., Yu, X. and Ni, Y.Q. (2019), "Effect of water content on the piezoresistive property of smart cementbased materials with carbon nanotube/nanocarbon black composite filler", Compos. Part A: Appl. Sci. Manufact., 119, 8-20. https://doi.org/10.1016/j.compositesa.2019.01.010   DOI
21 Kim, G.M., Naeem, F., Kim, H.K. and Lee, H.K. (2016), "Heating and heat-dependent mechanical characteristics of CNTembedded cementitious composites", Compos. Struct., 136, 162-170. https://doi.org/10.1016/j.compstruct.2015.10.010   DOI
22 Blanch, A.J., Lenehan, C.E. and Quinton, J.S. (2010), "Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution", J. Phys. Chem. B, 114(30), 9805-9811. https://doi.org/10.1021/jp104113d   DOI
23 Rovnanik, P., Kusak, I., Bayer, P., Schmid, P. and Fiala, L. (2019), "Electrical and self-sensing properties of alkali-activated slag composite with graphite filler", Mater., 12(10), 1616. https://doi.org/10.3390/ma12101616   DOI
24 Konsta-Gdoutos, M.S. and Aza, C.A. (2014), "Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures", Cement Concrete Compos., 53, 162-169. https://doi.org/10.1016/j.cemconcomp.2014.07.003   DOI
25 Chen, X. and Wu, S. (2013), "Influence of water-to-cement ratio and curing period on pore structure of cement mortar", Const. Build. Mater., 38, 804-812. https://doi.org/10.1016/j.conbuildmat.2012.09.058   DOI
26 Hannan, M.A., Hassan, K. and Jern, K.P. (2018), "A review on sensors and systems in structural health monitoring: current issues and challenges", Smart Struct. Syst., Int. J., 22(5), 509-525. https://doi.org/10.12989/sss.2018.22.5.509   DOI
27 Jang, S.H., Kawashima, S. and Yin, H. (2016), "Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes", Mater., 9(4), 220. https://doi.org/10.3390/ma9040220   DOI
28 Jiang, S., Zhou, D., Zhang, L., Ouyang, J., Yu, X., Cui, X. and Han, B. (2018), "Comparison of compressive strength and electrical resistivity of cementitious composites with different nano-and micro-fillers", Arch. Civ. Mech. Eng., 18(1), 60-68. https://doi.org/10.1016/j.acme.2017.05.010   DOI
29 Lazarenko, A., Vovchenko, L., Prylutskyy, Y., Matzuy, L., Ritter, U. and Scharff, P. (2009), "Mechanism of thermal and electrical conductivity in polymer-nanocarbon composites", Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prufung, Eigenschaften und Anwendungen technischer Werkstoffe, 40(4), 268-272. https://doi.org/10.1002/mawe.200900439   DOI
30 Li, W. (2013), "The self-sensing, electrical and mechanical properties of the epoxy composites reinforced with carbon nanotubes-micro reinforcement nano/micro hybrids", Ecole Centrale Paris, NNT: 2013ECAP0049 Doctoral dissertation (English).
31 Li, X. and Li, M. (2019), "Multifunctional self-sensing and ductile cementitious materials", Cement Concrete Res., 123, 105714. https://doi.org/10.1016/j.cemconres.2019.03.008   DOI
32 Sun, M., Staszewski, W.J. and Swamy, R.N. (2010), "Smart sensing technologies for structural health monitoring of civil engineering structures", Adv. Civil Eng. https://doi.org/10.1155/2010/724962   DOI
33 Lezgy-Nazargah, M., Saeidi-Aminabadi, S. and Yousefzadeh, M.A. (2019), "Design and fabrication of a new fiber-cementpiezoelectric composite sensor for measurement of inner stress in concrete structures", Arch. Civil Mech. Eng., 19, 405-416. https://doi.org/10.1016/j.acme.2018.12.007   DOI
34 Li, G.Y., Wang, P.M. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surfacetreated multi-walled carbon nanotubes", Carbon, 43(6), 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017   DOI
35 Noel, A.B., Abdaoui, A., Elfouly, T., Ahmed, M.H., Badawy, A. and Shehata, M.S. (2017), "Structural health monitoring using wireless sensor networks: A comprehensive survey", IEEE Communications Surveys & Tutorials, 19(3), 1403-1423. https://doi.org/10.1109/COMST.2017.2691551   DOI
36 Cao, J. and Chung, D.D.L. (2004), "Electric polarization and depolarization in cement-based materials, studied by apparent electrical resistance measurement", Cement Concrete Res., 34(3), 481-485. https://doi.org/10.1016/j.cemconres.2003.09.003   DOI
37 Ubertini, F., Materazzi, A.L., D'Alessandro, A. and Laflamme, S. (2014), "Natural frequencies identification of a reinforced concrete beam using carbon nanotube cement-based sensors", Eng. Struct., 60, 265-275. https://doi.org/10.1016/j.engstruct.2013.12.036   DOI
38 Wang, L. and Aslani, F. (2019), "A review on material design, performance, and practical application of electrically conductive cementitious composites", Const. Build. Mater., 229, 116892. https://doi.org/10.1016/j.conbuildmat.2019.116892   DOI
39 Luo, Y., Chen, Y., Wan, H. P., Yu, F. and Shen, Y. (2021), "Development of laser-based displacement monitoring system and its application to large-scale spatial structures", J. Civil Struct. Health Monitor., 11(2), 381-395. https://doi.org/10.1007/s13349-020-00459-4   DOI
40 Nagayama, T., Sim, S.H., Miyamori, Y. and Spencer, B.F. Jr. (2007), "Issues in structural health monitoring employing smart sensors", Smart Struct. Syst., Int. J., 3(3), 299-320. https://doi.org/10.12989/sss.2007.3.3.299   DOI
41 Rao, R. and Sasmal, S. (2019), "Detection of flaw in steel anchorconcrete composite using high-frequency wave characteristics", Steel Compos. Struct., Int. J., 31(4), 341-359. https://doi.org/10.12989/scs.2019.31.4.341   DOI
42 Reales, O.A.M., Jaramillo, Y.P.A., Botero, J.C.O., Delgado, C.A., Quintero, J.H. and Toledo Filho, R.D. (2018), "Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes", Cement Concrete Res., 107, 101-109. https://doi.org/10.1016/j.cemconres.2018.02.020   DOI
43 D'Alessandro, A., Rallini, M., Ubertini, F., Materazzi, A.L. and Kenny, J.M. (2016), "Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications", Cement Concrete Compos., 65, 200-213. https://doi.org/10.1016/j.cemconcomp.2015.11.001   DOI
44 Rice, J.A., Mechitov, K., Sim, S.-H., Nagayama, T., Jang, S., Kim, R., Spencer, Jr., B.F., Agha, G. and Fujino, Y. (2010), "Flexible smart sensor framework for autonomous structural health monitoring", Smart Struct. Syst., Int. J., 6(5), 423-438. https://doi.org/10.12989/sss.2010.6.5_6.423   DOI
45 Ma, Z., Yun, C. B., Wan, H. P., Shen, Y., Yu, F. and Luo, Y. (2021), "Probabilistic principal component analysis-based anomaly detection for structures with missing data", Struct. Cont. Health Monitor., e2698. https://doi.org/10.1002/stc.2698   DOI
46 Musso, S., Tulliani, J.M., Ferro, G. and Tagliaferro, A. (2009), "Influence of carbon nanotubes structure on the mechanical behavior of cement composites", Compos. Sci. Tech., 69(11-12), 1985-1990. https://doi.org/10.1016/j.compscitech.2009.05.002   DOI
47 Nochaiya, T. and Chaipanich, A. (2011), "Behavior of multiwalled carbon nanotubes on the porosity and microstructure of cement-based materials", Appl. Sur. Sci., 257(6), 1941-1945. https://doi.org/10.1016/j.apsusc.2010.09.030   DOI
48 Rao, R., Sindu, B.S. and Sasmal, S. (2020), "Synthesis, design and piezo-resistive characteristics of cementitious smart nanocomposites with different types of functionalized MWCNTs under long cyclic loading", Cement Concrete Compos., 108, 103517. https://doi.org/10.1016/j.cemconcomp.2020.103517   DOI
49 Sasmal, S., Ravivarman, N., Sindu, B.S. and Vignesh, K. (2017b), "Electrical conductivity and piezo-resistive characteristics of CNT and CNF incorporated cementitious nanocomposites under static and dynamic loading", Compos. Part A: Appl. Sci. Manufact., 100, 227-243. https://doi.org/10.1016/j.compositesa.2017.05.018   DOI
50 Luo, J.L., Duan, Z.D., Zhao, T.J. and Li, Q.Y. (2011), "Effect of compressive strain on electrical resistivity of carbon nanotube cement-based composites", Key Eng. Mater., 483, 579-583. https://doi.org/10.4028/www.scientific.net/KEM.483.579   DOI
51 Luo, J., Duan, Z. and Li, H. (2009), "The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites", Physica Status Solidi (a), 206(12), 2783-2790. https://doi.org/10.1002/pssa.200824310   DOI