Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.2.153

Modifications on F2MC tubes as passive tunable vibration absorbers  

Muhammad, Shiren O. (Department of Mechanical and Mechatronics Engineering, Salahaddin University - Erbil)
Hussain, Nazhad A. (Department of Mechanical and Mechatronics Engineering, Salahaddin University - Erbil)
Publication Information
Smart Structures and Systems / v.28, no.2, 2021 , pp. 153-165 More about this Journal
Abstract
This paper presents new parameters for damping improvement in F2MC tubes performance as tunable vibration absorbers. They offer very good performance with environments having susceptibility to high frequency vibration noise. This study highlights the behavior of changing some parameters of F2MC tubes which never have been studied before. These parameters include thickness ratio between each two respective layers and fluid type that the tubes are filled with. In this paper the beam governing equations with the tube's stress analyses equations are solved for finding the combined system's response by MATLAB® software function solvers. To ensure accuracy of modifications, validations have been proposed by performing illustrative examples and comparing the results with the existing data available in literature. The results showed improvements of F2MC tubes performance 20% over previous studies achievements by studying the thickness ratio, and another 12.82% can be added by using glycerin instead of water under the same conditions. Finally, the reduction of 34.34 dB in first mode amplitude of vibration was achieved in the beam's frequency response function plot.
Keywords
damping; $F^2MC$ tubes; first mode shape; frequency response function plot; passive vibration absorbers; vibration control;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Takacs, G., Batista, G., Gulan, M. and Rohal'-Ilkiv, B. (2016), "Embedded explicit model predictive vibration control", Mechatronics, 36, 54-62. https://doi.org/10.1016/j.mechatronics.2016.04.008   DOI
2 Usharani, R., Uma, G., Umapathy, M. and Choi, S.B. (2017), "A new broadband energy harvester using propped cantilever beam with variable overhang", Smart Struct. Syst., Int. J., 19(5), 567-576. https://doi.org/10.12989/sss.2017.19.5.567   DOI
3 Yun, S.K., Yoon, S.S., Kang, S. and Kim, M. (2008), "Design and Vibration Control of Safe Robot Arm with MR-Based Passive Compliant Joint", J. Syst. Des. Dyn., 2, 475-484. https://doi.org/10.1299/jsdd.2.475   DOI
4 Zhu, B., Rahn, C.D. and Bakis, C.E. (2011), "Tailored fluidic composites for stiffness or volume change", Proceedings of Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Scottsdale, AZ, USA, pp. 607-612. https://doi.org/10.1115/SMASIS2011-4962   DOI
5 Zhu, B., Rahn, C.D. and Bakis, C.E. (2013a), "Vibration damping of a cantilever beam utilizing fluidic flexible matrix composites", Proceedings of Active and Passive Smart Structures and Integrated Systems, San Diego, CA, USA, March. https://doi.org/10.1117/12.2014763   DOI
6 Zhu, B., Rahn, C.D. and Bakis, C.E. (2013b), "Vibration damping of a cantilever beam utilizing fluidic flexible matrix composites", Procedings of Active and Passive Smart Structures and Integrated Systems, San Diego, CA, USA, March. https://doi.org/10.1117/12.2014763   DOI
7 Zhu, B., Rahn, C.D. and Bakis, C.E. (2014b), "Fluidic flexible matrix composite vibration absorber for a cantilever beam", J. Vib. Acoust., 137(2), 021005. https://doi.org/10.1115/1.4029002   DOI
8 Zhu, B., Rahn, C.D. and Bakis, C.E. (2015), "Fluidic flexible matrix composite damping treatment for a cantilever beam", J. Sound Vib., 340, 80-94. https://doi.org/10.1016/j.jsv.2014.11.042   DOI
9 Zhu, B., Krott, M.J., Rahn, C.D. and Bakis, C.E. (2014a), "Experimental characterization of a cantilever beam with a fluidic flexible matrix composite vibration treatment", Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Buffalo, New York, USA. https://doi.org/10.1115/DETC2014-34966   DOI
10 Scarborough, L.H. (2014), "Dynamics of fluidic devices with applications to rotor pitch links", Dissertation; Pennsylvania State University, University Park, PA, USA.
11 Casas-Ramos, M.A. and Sandoval-Romero, G.E. (2017), "Cantilever beam vibration sensor based on the axial property of fiber Bragg grating", Smart Struct. Syst., Int. J., 19(6), 625-631. https://doi.org/10.12989/sss.2017.19.6.625   DOI
12 Shan, Y., Philen, M.P., Bakis, C.E., Wang, K.W. and Rahn, C.D. (2006), "Nonlinear-elastic finite axisymmetric deformation of flexible matrix composite membranes under internal pressure and axial force", Compos. Sci. Technol., 66, 3053-3063. https://doi.org/10.1016/j.compscitech.2006.01.002   DOI
13 Chen, S.S., Wambsganss, M.T. and Jendrzejczyk, J.A. (1976), "Added mass and damping of a vibrating rod in confined viscous fluids", J. Appl. Mech., 43, 325-329.   DOI
14 Philen, M. (2010), "Tunable modulus structures utilizing fluidic flexible matrix composites: analytical and experimental investigations", Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, USA, pp. 2663-2663. https://doi.org/10.2514/6.2010-2663   DOI
15 Philen, M.K., Shan, Y., Prakash, P., Wang, K.W., Rahn, C.D., Zydney, A.L. and Bakis, C.E. (2007), "Fibrillar network adaptive structure with ion-transport actuation", J. Intell. Mater. Syst. Struct., 18, 323-334. https://doi.org/10.1177/1045389X06066097tions   DOI
16 Sun, C.T. and Li, S. (1988), "Three-dimensional effective elastic constants for thick laminates", J. Compos. Mater., 22, 629-639. https://doi.org/10.1177/002199838802200703   DOI
17 Tanaka, H. and Takahara, S. (1981), "Fluid elastic vibration of tube array in cross flow", J. Sound Vib., 77, 19-37. https://doi.org/10.1016/S0022-460X(81)80005-3   DOI
18 Temperley, H.N.V. and Trevena, D.H. (1978), Liquids and their Properties: A Molecular and Macroscopic Treatise with Applications, Bookbarn International, Ellis Horwood Ltd., Bristol, SOM, UK.
19 Lotfi-Gaskarimahalle, A., Shan, Y., Li, S., Rahn, C.D., Bakis, C.E. and Wang, K.W. (2008), "Stiffness shaping for zero vibration fluidic flexible matrix composites", Proceedings of ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Ellicott, MA, USA. https://doi.org/10.1115/SMASIS2008-501   DOI
20 Chen, Y., Sun, J., Liu, Y. and Leng, J. (2012), "Experiment and analysis of fluidic flexible matrix composite (F2MC) tube", J. Intell. Mater. Syst. Struct., 23(3), 279-290. https://doi.org/10.1177/1045389X11420591   DOI
21 Ghodsi, M., Ziaiefar, H., Mohammadzaheri, M., Omar, F.K. and Bahadur, I. (2019), "Dynamic analysis and performance optimization of permendur cantilevered energy harvester", Smart Struct. Syst., Int. J., 23(5), 421-428. https://doi.org/10.12989/sss.2019.23.5.421   DOI
22 Miller, R.R. (1965), "The effects of frequency and amplitude of oscillation on the hydrodynamic masses of irregular shaped bodies", University of Rhode Island.
23 Kirn, J., Lorkowski, T. and Baier, H. (2011), "Development of flexible matrix composites (FMC) for fluidic actuators in morphing systems", Int. J. Struct. Integr., 2, 458-473. https://doi.org/10.1108/17579861111183948   DOI
24 Lekhnitskii, S.G. (1977), Theory of Elasticity of an Anisotropic body, Moscow: Mir Publishers.
25 Loktionov, A.P. (2017), "A measuring system for determination of a cantilever beam support moment", Smart Structures and Systems, 19(4), 431-439. https://doi.org/10.12989/sss.2017.19.4.431   DOI
26 Miura, K., Krott, M., Smith, E., Rahn, C.D. and Romano, P. (2015), "Experimental validation of Tailboom vibration control using fluidic flexible matrix composite tubes", Proceedings of AHS 71st Annual Forum of the American Helicopter Society, Virginia Beach, CA, USA, pp. 1252-1260.
27 Oueini, S.S., Nayfeh, A.H. and Pratt, J.R. (1998), "A nonlinear vibration absorber for flexible structures", Nonlinear Dyn., 15, 259-282. https://doi.org/10.1023/A:1008250524547   DOI
28 Philen, M. (2012), "Fluidic flexible matrix composite semi-active vibration isolation mounts", J. Intell. Mater. Syst. Struct., 23, 353-363. https://doi.org/10.1177/1045389X11421823   DOI
29 Philen, M. (2008), "Sliding mode control of variable modulus structures based upon fluidic flexible matrix composites", 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference,10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference, Schaumburg, IL, USA, pp. 1-12. https://doi.org/10.2514/6.2008-2127   DOI
30 Boresi, A.P., Schmidt, R.J. and Sidebottom, O.M. (1993), Advanced Mechanics of Materials, John Willey & Sons Inc., USA.
31 Viguie, R. and Kerschen, G. (2009), "Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology", J. Sound Vib., 326, 780-793. https://doi.org/10.1016/j.jsv.2009.05.023   DOI
32 Wang, X. and Shi, Z. (2015), "Unified solutions for piezoelectric bilayer cantilevers and solution modifications", Smart Struct. Syst., Int. J., 16(5), 759-780. https://doi.org/10.12989/sss.2015.16.5.759   DOI
33 Zhang, Z., Philen, M. and Neu, W. (2010), "A biologically inspired artificial fish using flexible matrix composite actuators: Analysis and experiment", Smart Mater. Struct., 19, 1-11. https://doi.org/10.1088/0964-1726/19/9/094017   DOI
34 Liu, B., Wang, Y.R. and Feng, H.H. (2013), "A Design Method of Position Schemes for Particle Dampers Applied to a Flywheel", Appl. Mech. Mater., 482, 163-168. https://doi.org/10.4028/www.scientific.net/AMM.482.163   DOI
35 Zhao, Y.Y. and Xu, J. (2007), "Effects of delayed feedback control on nonlinear vibration absorber system", J. Sound Vib., 308, 212-230. https://doi.org/10.1016/j.jsv.2007.07.041   DOI
36 Gere, J.M. (2004), Mechanics of Materials, Thomson Brooks/Cole.
37 Gholizadeh, H., Burton, R. and Schoenau, G. (2011), "Fluid bulk modulus: a literature survey", Int. J. Fluid Power, 12, 5-15. https://doi.org/10.1080/14399776.2011.10781033   DOI
38 Itoh, T., Shimomura, T. and Okubo, H. (2011), "Semi-Active Vibration Control of Smart Structures with Sliding Mode Control", J. Syst. Des. Dyn., 5, 716-726. https://doi.org/10.1299/jsdd.5.716   DOI
39 Kurczewski, N.A., Scarborough III, L.H., Rahn, C.D. and Smith, E.C. (2012), "Coupled Fluidic Vibration Isolators for Rotorcraft Pitch Link Loads Reduction", International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA, pp. 281-281. https://doi.org/10.1115/DETC2012-70174   DOI
40 Lotfi-Gaskarimahalle, A., Scarborough III, L.H., Rahn, C.D. and Smith, E.C. (2009), "Fluidic composite tuned vibration absorbers", Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Oxnard, CA, USA. https://doi.org/10.1115/SMASIS2009-1349   DOI
41 Nakahara, T. and Fujimoto, T. (2011), "Energy regenerative active vibration control of cantilever beam using piezoelectric actuator and class d amplifier", J. Syst. Des. Dy., 5, 737-751. https://doi.org/10.1299/jsdd.5.737   DOI
42 Dalrymple, R.A., Kirby, J.T. and Hwang, P.A. (1984), "Wave diffraction due to areas of energy dissipation", J. Waterway Port Coast. Ocean Eng., 110, 67-69. https://doi.org/10.1061/(ASCE)0733-950X(1984)110:1(67)   DOI
43 Bakaiyan, H., Hosseini, H. and Ameri, E. (2009), "Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations", Compos. Struct., 88, 532-541. https://doi.org/10.1016/j.compstruct.2008.05.017   DOI
44 Starosvetsky, Y. and Gendelman, O.V. (2008), "Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: Optimization of a nonlinear vibration absorber", Nonlinear Dyn., 51, 47-57. https://doi.org/10.1007/s11071-006-9168-z   DOI
45 Philen, M., Shan, Y., Bakis, C., Wang, K.W. and Rahn, C. (2006), "Variable stiffness adaptive structures utilizing hydraulically pressurized flexible matrix composites with valve control", Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI, USA, pp. 1-11. https://doi.org/10.2514/6.2006-2134   DOI
46 Roberson, R.E. (1952), "Synthesis of a nonlinear dynamic vibration absorber", J. Franklin Inst., 254, 205-220. https://doi.org/10.1016/0016-0032(52)90457-2   DOI
47 Shan, Y., Philen, M., Lotfi, A., Li, S., Bakis, C.E., Rahn, C.D. and Wang, K.W. (2009), "Variable stiffness structures utilizing fluidic flexible matrix composites", J. Intell. Mater. Syst. Struct., 20, 443-456. https://doi.org/10.1177/1045389X08095270   DOI
48 Krott, M.J., Miura, K., LaBarge, S., Rahn, C., Smith, E.C. and Romano, P.Q. (2015), "Tube compliance effects on fluidic flexible matrix composite devices for rotorcraft vibration control", Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA.