Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.1.089

Damping enhancement of the inerter on the viscous damper in mitigating cable vibrations  

Gao, Hui (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University)
Wang, Hao (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University)
Li, Jian (Department of Civil, Environmental and Architectural Engineering, The University of Kansas)
Wang, Zhihao (School of Civil Engineering and Communication, North China University of Water Resources and Electric Power)
Ni, Youhao (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University)
Liang, Ruijun (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University)
Publication Information
Smart Structures and Systems / v.28, no.1, 2021 , pp. 89-104 More about this Journal
Abstract
This paper systematically investigates the effect of the inerter on the damping enhancement of a cable with a viscous damper (VD) installed close to the cable end. Three cases are considered, including the inerter installed parallel with the VD (PVID), the inerter placed in series with the VD (SVID), and the inerter installed at a higher location of the VD (HVID). The asymptotic solutions of the three cases are derived, which can predict the cable modal damping ratio when the inerter and the VD cause minimal perturbation in the undamped frequency of the cable. The effect of the inerter on the modal behavior of the cable with the VD is investigated. Based on the constrained static output LQR method, the effects of the inerter on the damping enhancement of the VD in mitigating cable multi-mode vibrations are further evaluated. The results show that the inerter can improve the control performance of the VD when the inertance is less than the optimum value. Further increasing the inertance beyond the optimum value, the optimum modal damping ratio of the cable decreases, and mode crossover is observed for the cable with PVID and HVID. Compared with the case where the VD and the inerter are located at the same location, the case of the HVID is more effective in mitigating cable multi-mode vibrations.
Keywords
damping enhancement; inerter; mode behavior; multi-mode vibration control; stay cable; viscous inerter damper;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chen, L., Sun, L.M. and Nagarajaiah, S. (2015), "Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics", Smart Struct. Syst., Int. J., 15(3), 627-643. http://dx.doi.org/10.12989/sss.2015.15.3.627   DOI
2 Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), "State-derivative feedback control of cable vibration using semiactive magnetorheological dampers", Comput-Aided. Civ. Inf., 20(6), 431-449. https://doi.org/10.1111/j.1467-8667.2005.00396.x   DOI
3 Fujino, Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng., 134(2), 269-278. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(269)   DOI
4 Domenico, D.D. and Ricciardi, G. (2019), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. D., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011   DOI
5 Giaralis, A. and Petrini, F. (2017), "Wind-induced vibration mitigation in tall buildings using the tuned mass-damperinerter", J. Struct. Eng., 143(9), 04017127. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001863   DOI
6 He, X., Cai, C., Wang, Z., Jing, H. and Qin, C. (2018), "Experimental verification of the effectiveness of elastic cross-ties in suppressing wake-induced vibrations of staggered stay cables", Eng. Struct., 167, 151-165. https://doi.org/10.1016/j.engstruct.2018.04.033   DOI
7 Zhang, R., Ni, Y.Q., Duan, Y. and Ko, J.M. (2019), "Development of a full-scale magnetorheological damper model for open-loop cable vibration control", Smart Struct. Syst., Int. J., 23(6), 553-564. https://doi.org/10.12989/sss.2019.23.6.553   DOI
8 Zhou, H., Huang, X., Xiang, N., He, J., Sun, L. and Xing, F. (2018a), "Free vibration of a taut cable with a damper and a concentrated mass", Struct. Control Health Monit., 25(11), e2251. https://doi.org/10.1002/stc.2251   DOI
9 Hu, Y., Chen, M.Z., Shu, Z. and Huang, L. (2015), "Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution", J. Sound Vib., 346, 17-36. https://doi.org/10.1016/j.jsv.2015.02.041   DOI
10 Huang, H.W., Liu, T.T. and Sun, L.M. (2019a), "Multi-mode cable vibration control using MR damper based on nonlinear modeling", Smart Struct. Syst., Int. J., 23(6), 565-577. https://doi.org/10.12989/sss.2019.23.6.565   DOI
11 Li, Y.M., Shen, W.A. and Zhu, H.P. (2019), "Vibration mitigation of stay cables using electromagnetic inertial mass dampers: fullscale experiment and analysis", Eng. Struct., 200, 109693. https://doi.org/10.1016/j.engstruct.2019.109693   DOI
12 Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), "Optimal design of viscous dampers for multi-mode vibration control of bridge cables", Eng. Struct., 27(5), 792-800. https://doi.org/10.1016/j.engstruct.2004.12.013   DOI
13 Kim, I.H., Jung, H.J. and Koo, J.H. (2010), "Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable", Smart Mater. Struct., 19(11), 115027. https://doi.org/10.1088/0964-1726/19/11/115027   DOI
14 Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. D., 41(3), 453-474. https://doi.org/10.1002/eqe.1138   DOI
15 Jamshidi, M., Chang, C.C. and Bakhshi, A. (2017), "Self-powered hybrid electromagnetic damper for cable vibration mitigation", Smart Struct. Syst., INt. J., 20(3), 285-301. https://doi.org/10.12989/sss.2017.20.3.285   DOI
16 Jeong, S., Lee, J., Cho, S. and Sim, S.H. (2019), "Integrated cable vibration control system using Arduino", Smart Struct. Syst., Int. J., 23(6), 695-702. https://doi.org/10.12989/sss.2019.23.6.695   DOI
17 Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech., 67(4), 772-776. https://doi.org/10.1115/1.1322037   DOI
18 Li, H., Liu, M. and Ou, J.P. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monit., 15(2), 120-142. https://doi.org/10.1002/stc.200   DOI
19 Ahmad, J., Cheng, S.H. and Ghrib, F. (2018), "Combined effect of external damper and cross-tie on the modal response of hybrid two-cable networks", J. Sound Vib., 417, 132-148. https://doi.org/10.1016/j.jsv.2017.12.023   DOI
20 Cai, C.S., Wu, W.J. and Araujo, M. (2007), "Cable vibration control with a TMD-MR damper system: experimental exploration", J. Struct. Eng., 133(5), 629-637. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(629)   DOI
21 Johnson, E.A., Christenson, R.E. and Spencer, B.F. (2003), "Semiactive damping of cables with sag", Comput-Aided. Civil Inf., 18(2), 132-146. https://doi.org/10.1111/1467-8667.00305   DOI
22 Jung, H.J., Spencer Jr, B.F., Ni, Y.Q. and Lee, I.W. (2004), "State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., Int. J., 17(3-4), 493-526. https://doi.org/10.12989/sem.2004.17.3_4.493   DOI
23 Kleissl, K. and Georgakis, C.T. (2012), "Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface", J. Wind Eng. Ind. Aerod., 104, 166-175. https://doi.org/10.1016/j.jweia.2012.02.031   DOI
24 Kovacs, I. (1982), "Zur frage der seilschwingungen und der seildampfung", Die Bautechnik., 59, 325-32. [In German]
25 Lazar, I.F., Neild, S.A. and Wagg, D.J. (2014), "Using an inerter-based device for structural vibration suppression", Earthq. Eng. Strut. D., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390   DOI
26 Hoang, N. and Fujino, Y. (2008), "Combined damping effect of two dampers on a stay cable", J. Bridge Eng., 13(3), 299-303. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:3(299)   DOI
27 Chen, Z.Q., Wang, X.Y., Ko, J.M., Ni, Y.Q., Spencer, B.F., Yang, G. and Hu, J.H. (2004), "MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge", Wind Struct., Int. J., 7(5), 293-304. https://doi.org/10.12989/was.2004.7.5.293   DOI
28 Chen, L., Nagarajaiah, S. and Sun, L.M. (2021), "A unified analysis of negative stiffness dampers and inerter-based absorbers for multimode cable vibration control", J. Sound Vib., 494: 115814. https://doi.org/10.1016/j.jsv.2020.115814   DOI
29 Duan, Y., Ni, Y.Q., Zhang, H., Spencer Jr, B.F., Ko, J.M. and Dong, S. (2019), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.537   DOI
30 Huang, Z., Hua, X., Chen, Z. and Niu, H. (2019b), "Performance evaluation of inerter-based damping devices for structural vibration control of stay cables", Smart Struct. Syst., Int. J., 23(6), 615-626. https://doi.org/10.12989/sss.2019.23.6.615   DOI
31 Javanbakht, M., Cheng, S.H. and Ghrib, F. (2020), "Multimode vibration control of stay cables using optimized negative stiffness damper", Struct. Control Health Monit., 27(4), e2503. https://doi.org/10.1002/stc.2503   DOI
32 Christenson, R.E., Spencer, B.F. and Johnson, E.A. (2006), "Experimental verification of smart cable damping", J. Eng. Mech., 132(3), 268-278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(268)   DOI
33 Lazar, I.F., Neild, S.A. and Wagg, D.J. (2016), "Vibration suppression of cables using tuned inerter dampers", Eng. Struct., 122, 62-71. https://doi.org/10.1016/j.engstruct.2016.04.017   DOI
34 Li, S., Chen, Z., Wu, T. and Kareem, A. (2013), "Rain-wind-induced in-plane and out-of-plane vibrations of stay cables", J. Eng. Mech., 139, 1688-1698. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000612   DOI
35 Liu, M., Yang, W., Chen, W. and Li, H. (2019), "Experimental investigation on multi-mode vortex-induced vibration control of stay cable installed with pounding tuned mass dampers", Smart Struct. Syst., Int. J., 23(6), 579-587. https://doi.org/10.12989/sss.2019.23.6.579   DOI
36 Main, J.A. and Jones, N.P. (2002), "Free vibrations of taut cable with attached damper. I: Linear viscous damper", J. Eng. Mech., 128(10), 1062-1071. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1062)   DOI
37 Shen, X., Ma, R.J., Ge, C.X. and Hu, X.H. (2018), "Long-term monitoring of super-long stay cables on a cable-stayed bridge", Wind Struct., Int. J., 27(6), 357-368. https://doi.org/10.12989/was.2018.27.6.357   DOI
38 Ma, R.S., Bi, K.M. and Hao, H. (2020), "Using inerter-based control device to mitigate heave and pitch motions of semi-submersible platform in the shallow sea", Eng. Struct., 207, 110248. https://doi.org/10.1016/j.engstruct.2020.110248   DOI
39 Ma, R.S., Bi, K.M., Hao, H. (2021), "A novel rotational inertia damper for amplifying fluid resistance: Experiment and mechanical model", Mech. Syst. Signal PR., 149, 107313. https://doi.org/10.1016/j.ymssp.2020.107313   DOI
40 Ni, Y.Q., Wang, X.Y., Chen, Z.Q. and Ko, J.M. (2007), "Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge", J. Wind Eng. Ind. Aerod., 95(5), 303-328. https://doi.org/10.1016/j.jweia.2006.07.001   DOI
41 Shi, X. and Zhu, S.Y. (2018), "Dynamic characteristics of stay cables with inerter dampers", J. Sound Vib., 423, 287-305. https://doi.org/10.1016/j.jsv.2018.02.042   DOI
42 Shi, X., Zhu, S.Y. and Spencer, B.F. (2017), "Experimental study on passive negative stiffness damper for cable vibration mitigation", J. Eng. Mech., 143(9), 04017070. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001289   DOI
43 Lu, L., Duan, Y.F., Spencer Jr, B.F., Lu, X. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control Health Monit., 24(10), e1986. https://doi.org/10.1002/stc.1986   DOI
44 Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter", Ieee. T. On. Automat. Contr., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532   DOI
45 Wang, Z.H., Xu, Y.W., Gao, H., Chen, Z.Q., Xu, K. and Zhao, S.B. (2019), "Vibration control of a stay cable with a rotary electromagnetic inertial mass damper", Smart Struct. Syst., Int. J., 23(6), 627-639. https://doi.org/10.12989/sss.2019.23.6.627   DOI
46 Luo, J.N., Jiang, J.Z. and Macdonald, J.H.G. (2019), "Cable vibration suppression with inerter-based absorbers", J. Eng. Mech., 145(2), 04018134. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001554   DOI
47 Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. D., 43(4), 507-527. https://doi.org/10.1002/eqe.2355   DOI
48 Weber, F. and Distl, H. (2015), "Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution", Smart Mater. Struct., 24(11), 115015. https://doi.org/10.1088/0964-1726/24/11/115015   DOI
49 Weber, F., Feltrin, G., Maslanka, M., Fobo, W. and Distl, H. (2009), "Design of viscous dampers targeting multiple cable modes", Eng. Struct., 31(11), 2797-2800. https://doi.org/10.1016/j.engstruct.2009.06.020   DOI
50 Zhang, R., Zhao, Z., Pan, C., Ikago, K. and Xue, S. (2020), "Damping enhancement principle of inerter system", Struct. Control Health Monit. 27(5), e2523. https://doi.org/10.1002/stc.2523   DOI
51 Zhou, P. and Li, H. (2016), "Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations", Struct. Control Health Monit., 23(4), 764-782. https://doi.org/10.1002/stc.1809   DOI
52 Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng., 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)   DOI
53 Gao, H., Wang, H., Li, J., Wang, Z., Liang, R., Xu, Z. and Ni, Y. (2021), "Optimum design of viscous inerter damper targeting multi-mode vibration mitigation of stay cables", Eng. Struct., 226, 111375. https://doi.org/10.1016/j.engstruct.2020.111375   DOI
54 Fournier, J.A. and Cheng, S.H. (2014), "Impact of damper stiffness and damper support stiffness on the efficiency of a linear viscous damper in controlling stay cable vibrations", J. Bridge Eng., 19(4), 04013022. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000562   DOI
55 Lu, L., Fermandois, G.A., Lu, X., Spencer Jr, B.F., Duan, Y.F. and Zhou, Y. (2019), "Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation", Smart Struct. Syst., Int. J., 23(6), 589-613. https://doi.org/10.12989/sss.2019.23.6.589   DOI
56 Mehrabi, A.B. and Tabatabai, H. (1998), "Unified finite difference formulation for free vibration of cables", J. Struct. Eng., 124(11), 1313-1322. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1313)   DOI
57 Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probabilist. Eng. Mech., 38, 156-164. https://doi.org/10.1016/j.probengmech.2014.03.007   DOI
58 Zhou, H., Xiang, N., Huang, X., Sun, L., Xing, F. and Zhou, R. (2018b), "Full-scale test of dampers for stay cable vibration mitigation and improvement measures", Struct. Monit. Maint., Int. J., 5(4), 489-506. https://doi.org/10.12989/smm.2018.5.4.489   DOI
59 Zhu, H., Li, Y., Shen, W. and Zhu, S. (2019), "Mechanical and energy-harvesting model for electromagnetic inertial mass dampers", Mech. Syst. Signal PR., 120, 203-220. https://doi.org/10.1016/j.ymssp.2018.10.023   DOI
60 Sun, L.M., Hong, D.X. and Chen, L. (2017), "Cables interconnected with tuned inerter damper for vibration mitigation", Eng. Struct., 151, 57-67. https://doi.org/10.1016/j.engstruct.2017.08.009   DOI
61 Shi, X., Zhu, S., Li, J.Y. and Spencer, B.F. (2016), "Dynamic behavior of stay cables with passive negative stiffness dampers", Smart Mater. Struct., 25(7), 075044. https://doi.org/10.1088/0964-1726/25/7/075044   DOI
62 Li, J.Y., Zhu, S., Shi, X. and Shen, W. (2020), "Electromagnetic shunt damper for bridge cable vibration mitigation: full-scale experimental study", J. Struct. Eng., 146(1), 04019175. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002477   DOI
63 Agrawal, A.K. and Yang, J.N. (1999), "Design of passive energy dissipation systems based on LQR control methods", J. Intell. Mater. Syst. Struct., 10(12), 933-944. https://doi.org/10.1106/FB58-N1DG-ECJT-B8H4   DOI
64 Wang, H., Mao, J.X. and Xu, Z.D. (2020), "Investigation of dynamic properties of a long-span cable-stayed bridge during typhoon events based on structural health monitoring", J. Wind Eng. Ind. Aerod., 201, 104172. https://doi.org/10.1016/j.jweia.2020.104172   DOI