A study of a new hybrid vibration energy harvester based on broadband-multimode |
Chen, Bing
(School of Mechanical Engineering, University of Science and Technology Beijing)
Li, Shiqing (School of Mechanical Engineering, University of Science and Technology Beijing) Tang, Xiaolei (School of Mechanical Engineering, University of Science and Technology Beijing) Zhang, Lijie (China North Research Institute) |
1 | Lu, L.-H., Nakagawa, R., Kashio, Y., Ito, A., Shoji, H., Nishi, N., Hirashima, M., Yamauchi, A. and Nakamura, T. (1996), "Dynamical systems and numerical analysis", IEEE Computat. Sci. Eng., 4(2), 86-87. https://doi.org/10.1109/MCSE.1997.609839 DOI |
2 | Bennet, A.G. (1968), Electricity and Modern Physics, London: Edward Arnold, London, UK. |
3 | Erturk, A. and Inman, D.J. (2008), "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", J. Vib. Acoust.-Transact. ASME, 130(4). https://doi.org/041002-041017.10.1115/1.2890402 |
4 | Hannan, M.A., Mutashar, S., Samad, S.A. and Hussain, A. (2014), "Energy harvesting for the implantable biomedical devices: issues and challenges", BioMed. Eng. Online, 13(1), 79-102. https://doi.org/10.1186/1475-925X-13-79 DOI |
5 | Ab Rahman, M.F., Kok, S.L., Ali, N.M., Hamzah, R.A. and Aziz, K.A.A. (2013), "Hybrid vibration energy harvester based on piezoelectric and electromagnetic transduction mechanism", Proceedings of 2013 IEEE Conference on Clean Energy and Technology (CEAT), Langkawi, Malaysia, November, pp. 243-247. https://doi.org/10.1109/CEAT.2013.6775634 DOI |
6 | Ali, S.F., Friswell, M.I. and Adhikari, S. (2010), "Piezoelectric energy harvesting with parametric uncertainty", Smart Mater. Struct., 19(10), 105010-105019. https://doi.org/10.1088/0964-1726/19/10/105010 DOI |
7 | Beeby, S.P., Tudor, M.J. and White, N.M. (2006), "Energy harvesting vibration sources for microsystems applications", Measure. Sci. Technol., 17(12), 175-195. https://doi.org/10.1088/0957-0233/17/12/r01. DOI |
8 | Matiko, J.W., Grabham, N.J., Beeby, S.P. and Tudor, M.J. (2013), "Review of the application of energy harvesting in buildings", Measure. Sci. Technol., 25(1), 012002-012027. https://doi.org/10.1088/0957-0233/25/1/012002 DOI |
9 | Mutashar, S., Hannan, M.A., Samad, S.A. and Hussain, A. (2013), "Efficient low-power recovery circuits for bio-implanted micro-sensors", Przeglad zachodni. 89(5), 15-18. |
10 | Kumar, K.A., Ali, S.F. and Arockiarajan, A. (2015), "Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization", Eur. Phys. J. Special Topics, 224(14-15), 2803-2822. https://doi.org/10.1140/epjst/e2015-02590-8 DOI |
11 | Tao, K., Ding, G.F., Wang, P.H., Liu, Q.F. and Yang, Z.Q. (2011), "Design and Simulation of Fully Integrated Micro Electromagnetic Vibration Energy Harvester", Appl. Mech. Mater, 152, 1087-1090. https://doi.org/10.4028/www.scientific.net/amm.152-154.1087 DOI |
12 | Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018 DOI |
13 | Sari, I., Balkan, T. and Kulah, H. (2008), "An electromagnetic micro power generator for wideband environmental vibrations", Sensors Actuat. A: Phys., 145, 405-413. https://doi.org/10.1016/j.sna.2007.11.021 DOI |
14 | Siddique, A.R.M., Mahmud, S. and Van Heyst, B. (2015), "A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms", Energy Convers. Manage., 106, 728-747. https://doi.org/10.1016/j.enconman.2015.09.071 DOI |
15 | Wang, X. (2016), Frequency Analysis of Vibration Energy Harvesting Systems, Elsevier, London, UK. |
16 | Yang, B., Lee, C., Xiang, W., Xie, J., He, J.H., Kotlanka, R.K., Low, S.P. and Feng, H. (2009), "Electromagnetic energy harvesting from vibrations of multiple frequencies", J. Micromech. Microeng., 19(3), 035001. https://doi.org/035001-035009.10.1088/0960-1317/19/3/035001 DOI |
17 | Zhao, S. and Erturk, A. (2009), "On the stochastic excitation of monostable and bistable electroelastic power generators: Relative advantages and tradeoffs in a physical system", Appl. Phys. Lett., 102(10), 1867-1897. https://doi.org/1867-1897.10.1063/1.4795296 DOI |
18 | Erturk, A., Hoffmann, J. and Inman, D.J. (2009), "A piezomagnetoelastic structure for broadband vibration energy harvesting", Appl. Phys. Lett., 94(25), 254102-254105. https://doi.org/10.1063/1.3159815 DOI |
19 | Cannarella, J., Selvaggi, J., Salon, S., Tichy, J. and Borca-Tasciuc, D.A. (2011), "Coupling factor between the magnetic and mechanical energy domains in electromagnetic power harvesting applications", IEEE Transact. Magnet., 47(8), 2076-2080. https://doi.org/10.1109/TMAG.2011.2122265 DOI |
20 | Challa, V.R., Prasad, M.G., Shi, Y. and Fisher, F.T. (1996), "A vibration energy harvesting device with bidirectional resonance frequency tenability", Smart Mater. Struct., 17(1), 15035-15010. https://doi.org/10.1088/0964-1726/17/01/015035 DOI |
21 | Glynne-Jones, P., Tudor, M.J., Beeby, S.P. and White, N.M. (2004), "An electromagnetic, vibration powered generator for intelligent sensor systems", Sensors Actuat. A: Phys., 110(1), 344-349. https://doi.org/10.1016/j.sna.2003.09.045 DOI |
22 | Huang, S.C. and Lin, K.A. (2012), "A novel design of a map-tuning piezoelectric vibration energy harvester", Smart Mater. Struct., 21(8), 085014-085024. https://doi.org/10.1088/0964-1726/21/8/085014 DOI |
23 | Jaber, N., Ramini, A., Hennawi, Q. and Younis, M.I. (2016), "Wideband MEMS resonator using multifrequency excitation", Sensors Actuat A: Phys., 106(2015), 140-145. https://doi.org/10.1016/j.sna.2016.02.030 DOI |
24 | Leng, Y., Tan, D., Liu, J., Zhang, Y. and Fan, S. (2017), "Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation", J. Sound Vib., 406, 146-160. https://doi.org/10.1016/j.jsv.2017.06.020 DOI |
25 | Weaver Jr, W., Timoshenko, S.P. and Young, D.H. (1990), Vibration Problems in Engineering, John Wiley & Sons, 208(5014), 417-432. https://doi.org/10.1038/208964b0 |
26 | Liu, H., Qian, Y. and Lee, C. (2013), "A multi-frequency vibration-based mems electromagnetic energy harvesting device", Sensors Actuat. A: Phys., 204(24), 37-43. https://doi.org/10.1016/j.sna.2013.09.015 DOI |
27 | Mann, B.P. and Sims, N.D. (2009), "Energy harvesting from the nonlinear oscillations of magnetic levitation", J. Sound Vib., 319(1-2), 515-530. https://doi.org/10.1016/j.jsv.2008.06.011 DOI |
28 | Rajarathinam, M. and Ali, S.F. (2018), "Energy generation in a hybrid harvester under harmonic excitation", Energy Convers. Manage., 155, 10-19. https://doi.org/10.1016/j.enconman.2017.10.054 DOI |
29 | Shen, W., Chen, D., Li, L. and Tao, M. (2015), "Modeling and simulation of vibration energy harvester with piezomagnetoelastic beam array", Proceedings of 2015 IEEE 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Calabria, Italy, May, pp. 303-307. https://doi.org/10.1109/CSCWD.2015.7230976 DOI |
30 | Varoto, P.S. and Mineto, A.T. (2014), "Nonlinear Dynamic Behavior of Cantilever Piezoelectric Energy Harvesters: Numerical and Experimental Investigation", In: Structural Health Monitoring, Proceedings of the Society for Experimental Mechanics Series, Bethel, CT, USA. |
31 | Zhao, S. and Erturk, A. (2013), "Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs", Smart Mater Struct., 22(1), 015002-015016. https://doi.org/10.1088/0964-1726/22/1/015002 DOI |
32 | Zhou, S., Cao, J., Inman, D.J., Lin, J. and Li, D. (2016), "Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement", 373, 223-235. https://doi.org/10.1016/j.jsv.2016.03.017 DOI |
33 | Zhou, W., Penamalli, G.R. and Zuo, L. (2011), "An efficient vibration energy harvester with a multi-mode dynamic magnifier", Smart Mater. Struct., 21(1), 015014-015023. https://doi.org/10.1088/0964-1726/21/1/015014 DOI |
34 | Wang, X. and Xiao, H. (2013). "Dimensionless analysis and optimization of piezoelectric vibration energy harvester", Int. Review Mech. Eng., 7(4), 607-624. |