Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.1.029

A study of a new hybrid vibration energy harvester based on broadband-multimode  

Chen, Bing (School of Mechanical Engineering, University of Science and Technology Beijing)
Li, Shiqing (School of Mechanical Engineering, University of Science and Technology Beijing)
Tang, Xiaolei (School of Mechanical Engineering, University of Science and Technology Beijing)
Zhang, Lijie (China North Research Institute)
Publication Information
Smart Structures and Systems / v.28, no.1, 2021 , pp. 29-41 More about this Journal
Abstract
To improve the energy conversion efficiency and working frequency bandwidth of a single frequency piezoelectric vibration energy harvester, a new type of hybrid vibration energy harvester is developed which is combined with the mechanism of piezoelectric and electromagnetic energy conversion. The system comprises of a PZT cantilever beam, an elastic suspended magnetic mass, a magnet block attached to the end of the cantilever beam and a resonator. The addition of resonator can not only increase the mode, but also adjust the frequency of harvester flexibly. Nonlinear magnetic force of magnet block not only broadens the frequency band and improves the output performance of the system, but also changes the resonant frequency to make the harvester have better adjustable performance. On this basis, an improved electromechanical coupled analytical model of continuum is proposed which can be solved by the Runge-Kutta algorithm and the influence of different factors (the mass and spring stiffness of the resonator, as well as the electromechanical coupling coefficient, electromagnetic coupling coefficient, magnet mass and magnetic flux) on the output are analyzed. According to the prototype of the vibration energy harvester developed, an experimental system was built. The performance of the independent and hybrid energy harvesters is evaluated by experimental and analytical methods. The peak output voltage of the piezoelectric part was about 4 times that of the electromagnetic part. The peak output current of the electromagnetic part is about 30 times that of the piezoelectric part. The study results show that the proposed new hybrid vibration energy harvester can achieve a wider frequency range and multimodal vibration energy harvesting. In addition, the bandwidth and power of the harvester can be dynamically adjusted by changing the resonator or electromechanical coupling coefficient, and the bandwidth of the harvester can also be adjusted by changing the quality and characteristics of the magnet.
Keywords
continuum; electromechanical coupling model; multimode; piezoelectric-electromagnetic mixing; resonator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lu, L.-H., Nakagawa, R., Kashio, Y., Ito, A., Shoji, H., Nishi, N., Hirashima, M., Yamauchi, A. and Nakamura, T. (1996), "Dynamical systems and numerical analysis", IEEE Computat. Sci. Eng., 4(2), 86-87. https://doi.org/10.1109/MCSE.1997.609839   DOI
2 Bennet, A.G. (1968), Electricity and Modern Physics, London: Edward Arnold, London, UK.
3 Erturk, A. and Inman, D.J. (2008), "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", J. Vib. Acoust.-Transact. ASME, 130(4). https://doi.org/041002-041017.10.1115/1.2890402
4 Hannan, M.A., Mutashar, S., Samad, S.A. and Hussain, A. (2014), "Energy harvesting for the implantable biomedical devices: issues and challenges", BioMed. Eng. Online, 13(1), 79-102. https://doi.org/10.1186/1475-925X-13-79   DOI
5 Ab Rahman, M.F., Kok, S.L., Ali, N.M., Hamzah, R.A. and Aziz, K.A.A. (2013), "Hybrid vibration energy harvester based on piezoelectric and electromagnetic transduction mechanism", Proceedings of 2013 IEEE Conference on Clean Energy and Technology (CEAT), Langkawi, Malaysia, November, pp. 243-247. https://doi.org/10.1109/CEAT.2013.6775634   DOI
6 Ali, S.F., Friswell, M.I. and Adhikari, S. (2010), "Piezoelectric energy harvesting with parametric uncertainty", Smart Mater. Struct., 19(10), 105010-105019. https://doi.org/10.1088/0964-1726/19/10/105010   DOI
7 Beeby, S.P., Tudor, M.J. and White, N.M. (2006), "Energy harvesting vibration sources for microsystems applications", Measure. Sci. Technol., 17(12), 175-195. https://doi.org/10.1088/0957-0233/17/12/r01.   DOI
8 Matiko, J.W., Grabham, N.J., Beeby, S.P. and Tudor, M.J. (2013), "Review of the application of energy harvesting in buildings", Measure. Sci. Technol., 25(1), 012002-012027. https://doi.org/10.1088/0957-0233/25/1/012002   DOI
9 Mutashar, S., Hannan, M.A., Samad, S.A. and Hussain, A. (2013), "Efficient low-power recovery circuits for bio-implanted micro-sensors", Przeglad zachodni. 89(5), 15-18.
10 Kumar, K.A., Ali, S.F. and Arockiarajan, A. (2015), "Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization", Eur. Phys. J. Special Topics, 224(14-15), 2803-2822. https://doi.org/10.1140/epjst/e2015-02590-8   DOI
11 Tao, K., Ding, G.F., Wang, P.H., Liu, Q.F. and Yang, Z.Q. (2011), "Design and Simulation of Fully Integrated Micro Electromagnetic Vibration Energy Harvester", Appl. Mech. Mater, 152, 1087-1090. https://doi.org/10.4028/www.scientific.net/amm.152-154.1087   DOI
12 Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018   DOI
13 Sari, I., Balkan, T. and Kulah, H. (2008), "An electromagnetic micro power generator for wideband environmental vibrations", Sensors Actuat. A: Phys., 145, 405-413. https://doi.org/10.1016/j.sna.2007.11.021   DOI
14 Siddique, A.R.M., Mahmud, S. and Van Heyst, B. (2015), "A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms", Energy Convers. Manage., 106, 728-747. https://doi.org/10.1016/j.enconman.2015.09.071   DOI
15 Wang, X. (2016), Frequency Analysis of Vibration Energy Harvesting Systems, Elsevier, London, UK.
16 Yang, B., Lee, C., Xiang, W., Xie, J., He, J.H., Kotlanka, R.K., Low, S.P. and Feng, H. (2009), "Electromagnetic energy harvesting from vibrations of multiple frequencies", J. Micromech. Microeng., 19(3), 035001. https://doi.org/035001-035009.10.1088/0960-1317/19/3/035001   DOI
17 Zhao, S. and Erturk, A. (2009), "On the stochastic excitation of monostable and bistable electroelastic power generators: Relative advantages and tradeoffs in a physical system", Appl. Phys. Lett., 102(10), 1867-1897. https://doi.org/1867-1897.10.1063/1.4795296   DOI
18 Erturk, A., Hoffmann, J. and Inman, D.J. (2009), "A piezomagnetoelastic structure for broadband vibration energy harvesting", Appl. Phys. Lett., 94(25), 254102-254105. https://doi.org/10.1063/1.3159815   DOI
19 Cannarella, J., Selvaggi, J., Salon, S., Tichy, J. and Borca-Tasciuc, D.A. (2011), "Coupling factor between the magnetic and mechanical energy domains in electromagnetic power harvesting applications", IEEE Transact. Magnet., 47(8), 2076-2080. https://doi.org/10.1109/TMAG.2011.2122265   DOI
20 Challa, V.R., Prasad, M.G., Shi, Y. and Fisher, F.T. (1996), "A vibration energy harvesting device with bidirectional resonance frequency tenability", Smart Mater. Struct., 17(1), 15035-15010. https://doi.org/10.1088/0964-1726/17/01/015035   DOI
21 Glynne-Jones, P., Tudor, M.J., Beeby, S.P. and White, N.M. (2004), "An electromagnetic, vibration powered generator for intelligent sensor systems", Sensors Actuat. A: Phys., 110(1), 344-349. https://doi.org/10.1016/j.sna.2003.09.045   DOI
22 Huang, S.C. and Lin, K.A. (2012), "A novel design of a map-tuning piezoelectric vibration energy harvester", Smart Mater. Struct., 21(8), 085014-085024. https://doi.org/10.1088/0964-1726/21/8/085014   DOI
23 Jaber, N., Ramini, A., Hennawi, Q. and Younis, M.I. (2016), "Wideband MEMS resonator using multifrequency excitation", Sensors Actuat A: Phys., 106(2015), 140-145. https://doi.org/10.1016/j.sna.2016.02.030   DOI
24 Leng, Y., Tan, D., Liu, J., Zhang, Y. and Fan, S. (2017), "Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation", J. Sound Vib., 406, 146-160. https://doi.org/10.1016/j.jsv.2017.06.020   DOI
25 Weaver Jr, W., Timoshenko, S.P. and Young, D.H. (1990), Vibration Problems in Engineering, John Wiley & Sons, 208(5014), 417-432. https://doi.org/10.1038/208964b0
26 Liu, H., Qian, Y. and Lee, C. (2013), "A multi-frequency vibration-based mems electromagnetic energy harvesting device", Sensors Actuat. A: Phys., 204(24), 37-43. https://doi.org/10.1016/j.sna.2013.09.015   DOI
27 Mann, B.P. and Sims, N.D. (2009), "Energy harvesting from the nonlinear oscillations of magnetic levitation", J. Sound Vib., 319(1-2), 515-530. https://doi.org/10.1016/j.jsv.2008.06.011   DOI
28 Rajarathinam, M. and Ali, S.F. (2018), "Energy generation in a hybrid harvester under harmonic excitation", Energy Convers. Manage., 155, 10-19. https://doi.org/10.1016/j.enconman.2017.10.054   DOI
29 Shen, W., Chen, D., Li, L. and Tao, M. (2015), "Modeling and simulation of vibration energy harvester with piezomagnetoelastic beam array", Proceedings of 2015 IEEE 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Calabria, Italy, May, pp. 303-307. https://doi.org/10.1109/CSCWD.2015.7230976   DOI
30 Varoto, P.S. and Mineto, A.T. (2014), "Nonlinear Dynamic Behavior of Cantilever Piezoelectric Energy Harvesters: Numerical and Experimental Investigation", In: Structural Health Monitoring, Proceedings of the Society for Experimental Mechanics Series, Bethel, CT, USA.
31 Zhao, S. and Erturk, A. (2013), "Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs", Smart Mater Struct., 22(1), 015002-015016. https://doi.org/10.1088/0964-1726/22/1/015002   DOI
32 Zhou, S., Cao, J., Inman, D.J., Lin, J. and Li, D. (2016), "Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement", 373, 223-235. https://doi.org/10.1016/j.jsv.2016.03.017   DOI
33 Zhou, W., Penamalli, G.R. and Zuo, L. (2011), "An efficient vibration energy harvester with a multi-mode dynamic magnifier", Smart Mater. Struct., 21(1), 015014-015023. https://doi.org/10.1088/0964-1726/21/1/015014   DOI
34 Wang, X. and Xiao, H. (2013). "Dimensionless analysis and optimization of piezoelectric vibration energy harvester", Int. Review Mech. Eng., 7(4), 607-624.