Browse > Article
http://dx.doi.org/10.12989/sss.2021.27.6.917

Smart structural stability and NN based intelligent control for nonlinear systems  

Chen, Tim (Faculty of Information Technology, Ton Duc Thang University)
Huang, Y.C. (Department of Earth Science, National Taiwan Normal University, Center of Natural Science, Kaohsiung Municipal Fushan Junior High School)
Hung, C.C. (Department of Mechanical Engineering, National Taiwan University, Faculty of Electronic Engineering, Taipei Municipal Muzha Vocational High School)
Frias, Suzanne (Department of Earth Science, National Taiwan Normal University, Center of Natural Science, Kaohsiung Municipal Fushan Junior High School)
Muhammad, J.A. (National Physical Laboratory)
Chen, C.Y.J. (Faculty of Engineering, King Abdulaziz University)
Publication Information
Smart Structures and Systems / v.27, no.6, 2021 , pp. 917-926 More about this Journal
Abstract
This paper has proposed an intelligent Evolutionary Bat Algorithm (afterward, EBA) Fuzzy NN (Neural Network) controller used to ensure the asymptotic simulation stability of a mathematics nonlinear system for a smart structure. The smart evolutionary fuzzy NN model adopts an NN numerical model and the linear differential inclusion (LDI) concept. Denotation of the nonlinear dynamics is constructed by transforming the nonlinear model into a multi-rule-based sector nonlinear form of mathematics linear numerical models, and implementing a new sufficient mathematics condition whereby the asymptotic simulation stability of the intelligent structure is guaranteed by the Lyapunov mathematics function, linear matrix inequality (LMI). The high frequency is also injected as an auxiliary to stabilize these nonlinear systems. According to the relaxed method injected with dithered auxiliary, the nonlinear system can be guaranteed stable by appropriately regulating the parameters. Finally, there is a numerical resultant example with simulation results which is designated in order to precisely demonstrate the advantages of the smart intelligent controller and the proposed control scheme compared to previous schemes.
Keywords
artificial intelligence; LMI; smart stability; automated design; nonlinear fuzzy control;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., Int. J., 29(2), 243-256. http://doi.org/10.12989/scs.2018.29.2.243   DOI
2 Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., Int. J., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547   DOI
3 Son, L., Bur, M., Rusli, M. and Adriyan, A. (2016), "Design of double dynamic vibration absorbers for reduction of two DOF vibration system", Struct. Eng. Mech., Int. J., 57(1), 161-178. https://doi.org/10.12989/sem.2016.57.1.161   DOI
4 Tanaka, K. (1995), "Stability and stabilizability of fuzzy-neural-linear control systems", IEEE Trans. Fuzzy Syst., 3(4), 438-447. https://doi.org/10.1109/91.481952   DOI
5 Tanaka, K. and Sugeno, M. (1992), "Stability analysis and design of fuzzy control systems", Fuzzy Sets Syst., 45(2), 135-156. https://doi.org/10.1016/0165-0114(92)90113-I   DOI
6 Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., Int. J., 23(6), 641-651. https://doi.org/10.12989/sss.2019.23.6.641   DOI
7 Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., Int. J., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249   DOI
8 Braz-Cesar, M.T. and Barros, R. (2018), "Semi-active fuzzy based control system for vibration reduction of a SDOF structure under seismic excitation", Smart Struct. Syst., Int. J., 21(4), 389-395. https://doi.org/10.12989/sss.2018.21.4.389   DOI
9 Chen, C.W. (2014a), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlinear Dyn., 76(1), 23-31. https://doi.org/10.1007/s11071-013-0869-9   DOI
10 Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447. http://doi.org/10.12989/scs.2018.28.4.439   DOI
11 Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., Int. J., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201   DOI
12 Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., Int. J., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363   DOI
13 Desoer, C.A. and Shahruz, S.M. (1986), "Stability of dithered nonlinear systems with backlash or hysteresis", Int. J. Control, 43, 1045-1060. https://doi.org/10.1080/00207178608933522   DOI
14 Chen, C.W. (2014b), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlinear Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8   DOI
15 Chen, T. (2020a), "LMI based criterion for reinforced concrete frame structures", Adv. Concr. Constr., Int. J., 9(4), 407-412. https://doi.org/10.12989/acc.2020.9.4.407   DOI
16 Chen, T. (2020b), "On the algorithmic stability of optimal control with derivative operators", Circuits Syst. Signal Process, 39(12), 5863-5881. https://doi.org/10.1007/s00034-020-01447-1   DOI
17 Chen, T. (2020c), "An intelligent algorithm optimum for building design of fuzzy structures", Iran J. Sci. Technol, Trans Civil Eng., 44, 523-531. https://doi.org/10.1007/s40996-019-00251-5   DOI
18 Chen, T. (2021), "Wind vibration control of stay cables using an evolutionary algorithm", Wind Struct., Int. J., 32(1), 73-86. https://doi.org/10.12989/was.2021.32.1.073   DOI
19 Chen, T. and Chen, C.Y.J. (2019), "Intelligent fuzzy algorithm for nonlinear discrete-time systems", Transact. Inst. Measure. Control, 42(7), 1358-1374. https://doi.org/10.1177/0142331219891383   DOI
20 Chen, T., Khurram, S. and Cheng, C. (2019a), "A relaxed structural mechanics and fuzzy control for fluid-structure dynamic analysis", Eng. Comput., 36(7), 2200-2219. https://doi.org/10.1108/EC-11-2018-0522   DOI
21 Chen, T., Khurram, S. and Cheng, C. (2019b), "Prediction and control of buildings with sensor actuators of fuzzy EB algorithm", Earthq. Struct., Int. J., 17(3), 307-315. https://doi.org/10.12989/eas.2019.17.3.307   DOI
22 Chen, T., Babanin, A. Assim Muhammad, B. Chapron, Chen C.Y.J. (2020), "Evolved fuzzy NN control for discrete-time nonlinear systems", J. Circuit. Syst. Comput., 29(1), 2050015. https://doi.org/10.1142/S0218126620500152   DOI
23 Chen, T., Kuo, D. and Chen, C.Y.J. (2021), "Fuzzy C-means robust algorithm for nonlinear systems", Soft Computing, 25(11), 7297-7305. https://doi.org/10.1007/s00500-021-05655-y   DOI
24 Chen, B.S., Tseng, C.S. and Uang, H.J. (1999), "R Robustness design of nonlinear dynamic systems via fuzzy linear control", IEEE Trans. Fuzzy Syst., 7(5), 571-585. https://doi.org/10.1109/91.797980   DOI
25 Kirakidis, K. (1998), "Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities", IEEE Transact. Fuzzy Syst., 9(2), 269-277. https://doi.org/10.3397/1.3097762   DOI
26 Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., Int. J., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385   DOI
27 Tsai, P.W. and Chen, C.W. (2014), "A novel criterion for nonlinear time-delay systems using LMI fuzzy Lyapunov method", Appl. Soft Comput., 25, 461-472. https://doi.org/10.1016/j.asoc.2014.08.045   DOI
28 Ghaffarzadeh, H. and Aghabalaei, K. (2017), "Adaptive fuzzy sliding mode control of seismically excited structures", Smart Struct. Syst., Int. J., 19(5), 577-585. https://doi.org/10.12989/sss.2017.19.5.577   DOI
29 Gutman, S. (1979), "Uncertain dynamic systems- a Lyapunov min-max approach", IEEE Trans. Automatic Control, 24, 438-443. https://doi.org/10.1109/TAC.1979.1102073   DOI
30 Jeong, S., Lee, J., Cho, S. and Sim, S.H. (2019), "Integrated cable vibration control system using Arduino", Smart Struct. Syst., Int. J., 23(6), 695-702. https://doi.org/10.12989/sss.2019.23.6.695   DOI
31 Limanond, S. and Si, J. (1998), "Neural network-based control design: An LMI approach", IEEE Trans. Neural Networks, 9(6), 1422-1429. https://doi.org/10.1109/72.728392   DOI
32 Pozo, F., Pujol, G. and Acho, L. (2016), "Vibration control of hysteretic base-isolated structures: an LMI approach", Smart Struct. Syst., Int. J., 17(2), 195-208. https://doi.org/10.12989/sss.2016.17.2.195   DOI
33 Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel concrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679   DOI