Browse > Article
http://dx.doi.org/10.12989/sss.2021.27.5.861

Subgrade assessment using automated dynamic cone penetrometer to manage geo-infrastructures  

Kim, Sang Yeob (Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign)
Lee, Jong-Sub (School of Civil, Environmental and Architectural Engineering, Korea University)
Hong, Won-Taek (Department of Civil & Environmental Engineering, Gachon University)
Publication Information
Smart Structures and Systems / v.27, no.5, 2021 , pp. 861-870 More about this Journal
Abstract
For the efficient management of geo-infrastructures in the field, engineering properties of the subgrade should be reliably and rapidly investigated. The objective of this study is to estimate and compare the strength and stiffness parameters of subgrades using portable in-situ devices. An automated dynamic cone penetrometer (ACP), dynamic cone penetrometer (DCP), and light falling weight deflectometer (LFWD) are adopted and applied at nine points of soft ground in South Korea. The N-value from the ACP (NACP), which efficiently assesses the relatively deep subgrade, is correlated with the dynamic cone penetration index (DCPI) and dynamic deflection modulus (Evd). Test results show that the DCPI and Evd can be estimated in terms of NACP. In particular, the relationship between Evd and NACP is improved when the strain influence factor of the target ground is considered. For the assessment of strength and stiffness parameters, the California bearing ratio (CBR), relative density (Dr), internal friction angle (ɸ), and elastic moduli determined by the plate loading test (PLT), soil stiffness gauge (SSG), falling weight deflectometer (FWD) are estimated using NACP. The ACP test with the relationships between engineering parameters and NACP may be an effectively method to assess the overall characteristics of the subgrade.
Keywords
automated dynamic cone penetrometer (ACP); dynamic cone penetrometer (DCP); engineering parameter; light falling weight deflectometer (LFWD); subgrade;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nazzal, M., Abu-Farsakh, M., Alshibli, K. and Mohammad, L. (2004), "Evaluating the potential use of a portable LFWD for characterizing pavement layers and subgrades", In: Geotechnical Engineering for Transportation Projects, Proceedings of GeoTrans 2004, Los Angeles, CA, USA, July, pp. 915-924. https://doi.org/10.1061/40744(154)79   DOI
2 Putri, E.E., Kameswara, N.S.V.R. and Mannan, M.A. (2012), "Evaluation of modulus of elasticity and modulus of subgrade reaction of soils using CBR test", J. Civil Eng. Res., 2(1), 34-40. https://doi.org/10.5923/j.jce.20120201.05   DOI
3 Roy, S. (2016), "Assessment of soaked California bearing ratio value using geotechnical properties of soils", Resour. Environ., 6(4), 80-87. https://doi.org/10.5923/j.re.20160604.03   DOI
4 Kim, S.Y. and Lee, J.S. (2020), "Energy correction of dynamic cone penetration index for reliable evaluation of shear strength in frozen sand-silt mixtures", Acta Geotech., 15(4), 947-961. https://doi.org/10.1007/s11440-019-00812-y   DOI
5 McElvaney, J. and Bundadidjatnika, I.R. (1991), "Strength evaluation of lime-stabilised pavement foundations using the dynamic cone penetrometer", Aust. Road Res., 21(1), 45-52.
6 Sujatha, E.R., Geetha, A.R., Jananee, R. and Karunya, S.R. (2018), "Strength and mechanical behaviour of coir reinforced lime stabilized soil", Geomech. Eng., Int. J., 16(6), 627-634. https://doi.org/10.12989/gae.2018.16.6.627   DOI
7 Sawangsuriya, A. and Edil, T.B. (2005), "Evaluating stiffness and strength of pavement materials", Proc. Inst. Civil Eng. Geotech. Eng., 158(4), 217-230. https://doi.org/10.1680/geng.2005.158.4.217   DOI
8 Scala, A.J. (1956), "Simple methods of flexible pavement design using cone penetrometers", New Zeal. Eng., 11(2), 34-44.
9 Schmertmann, J.H., Brown, P.R. and Hartman, J.P. (1978), "Improved strain influence factor diagrams", J. Geotech. Geoenviron. Eng., 104(8), 1131-1135. https://doi.org/10.1061/AJGEB6.0000683   DOI
10 ASTM D6951 (2009), Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications, Annual Book of ASTM Standard, 04.03, ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/d6951_d6951m
11 ASTM E2583 (2007), Standard Test Method for Measuring Deflections with a Light Weight Deflectometer, Annual Book of ASTM Standard, ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/e2583-07
12 Balachowski, L. (2007), "Size effect in centrifuge cone penetration tests", Arch. Hydro-Eng. Environ. Mech., 54(3), 161-181.
13 Byun, Y.H. and Kim, D.J. (2020), "In-situ modulus detector for subgrade characterization", Int. J. Pavement. Eng. [Online published] https://doi.org/10.1080/10298436.2020.1743291   DOI
14 Byun, Y.H. and Lee, J.S. (2013), "Instrumented dynamic cone penetrometer corrected with transferred energy into a cone tip: a laboratory study", Geotech. Test. J., 36(4), 533-542. https://doi.org/10.1520/GTJ20120115   DOI
15 Chen, D.H., Lin, D.F., Liau, P.H. and Bilyeu, J. (2005), "A correlation between dynamic cone penetrometer values and pavement layer moduli", Geotech. Test. J., 28(1), 42-49. https://doi.org/10.1520/gtj12312   DOI
16 Elhakim, A.F., Elbaz, K. and Amer, M.I. (2014), "The use of light weight deflectometer for in situ evaluation of sand degree of compaction", HBRC J., 10(3), 298-307. https://doi.org/10.1016/j.hbrcj.2013.12.003   DOI
17 Fleming, P.R., Frost, M.W. and Lambert, J.P. (2007), "Review of lightweight deflectometer for routine in situ assessment of pavement material stiffness", Transport. Res. Rec., 2004(1), 80-87. https://doi.org/10.3141/2004-09   DOI
18 Alshibli, K.A., Abu-Farsakh, M. and Seyman, E. (2005), "Laboratory evaluation of the geogauge and light falling weight deflectometer as construction control tools", J. Mater. Civil Eng., 17(5), 560-569. https://doi.org/10.1061/(asce)0899-1561(2005)17:5(560)   DOI
19 Webster, S.L., Grau, R.H. and Williams, T.P. (1992), "Description and application of dual mass dynamic cone penetrometer", U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg. Instruction Report GL-92-3.
20 Usluogullari, O.F. and Vipulanandan, C. (2011), "Stress-strain behavior and California bearing ratio of artificially cemented sand", J. Test. Eval., 39(4), 637-645. https://doi.org/10.1520/jte103165   DOI
21 Kong, S.M., Kim, D.M., Lee, D.Y., Jung, H.S. and Lee, Y.J. (2018), "Field and laboratory assessment of ground subsidence induced by underground cavity under the sewer pipe", Geomech. Eng., Int. J., 16(3), 285-293. https://doi.org/10.12989/gae.2018.16.3.285   DOI
22 Briaud, J.L. (2013), Geotechnical Engineering: Unsaturated and Saturated Soils, John Wiley & Sons. https://doi.org/10.1002/9781118686195
23 Gidigasu, M.D. (1980), "Geotechnical evaluation of residual gravels in pavement construction", Eng. Geol., 15(3-4), 173-194. https://doi.org/10.1016/0013-7952(80)90033-2   DOI
24 Mir, M., Bouafia, A., Rahmani, K., and Aouali, N. (2017), "Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests", Geomech. Eng., Int. J., 13(1), 119-139. https://doi.org/10.12989/gae.2017.13.1.119   DOI
25 George, V., Rao, N.C. and Shivashankar, R. (2009), "PFWD, DCP and CBR correlations for evaluation of lateritic subgrades", Int. J. Pavement Eng., 10(3), 189-199. https://doi.org/10.1080/10298430802342765   DOI
26 Harison, J.A. (1987), "Correlation between California bearing ratio and dynamic cone penetrometer strength measurement of soils", Proc. Inst. Civil Eng., 83(4), 833-844. https://doi.org/10.1680/iicep.1987.204   DOI
27 Harison, J.A. (1989), "In situ CBR determination by DCP testing using a laboratory-based correlation", Aust. Road Res., 19(4), 313-317.
28 Hong, W.T., Byun, Y.H., Kim, S.Y. and Lee, J.S. (2016), "Cone penetrometer incorporated with dynamic cone penetration method for investigation of track substructures", Smart Struct. Syst., Int. J., 18(2), 197-216. https://doi.org/10.12989/sss.2016.18.2.197   DOI
29 Hong, W.T., Kim, S.Y., Lee, S.J. and Lee, J.S. (2017), "Strength and stiffness assessment of railway track substructures using crosshole-type dynamic cone penetrometer", Soil Dyn. Earthq. Eng., 100, 88-97. https://doi.org/10.1016/j.soildyn.2017.05.021   DOI
30 Kleyn, E.G. (1975), "The Use of the Dynamic Cone Penetrometer (DCP)", Transvaal Provincial Administration, Report No. 2/74, South Africa.
31 Lee, J.S. and Byun, Y.H. (2020), "Instrumented Cone Penetrometer for Dense Layer Characterization", Sensors, 20(20), 5782. https://doi.org/10.3390/s20205782   DOI
32 Gabr, M.A., Hopkins, K., Coonse, J. and Hearne, T. (2000), "DCP criteria for performance evaluation of pavement layers", J. Perform. Constr. Facil., 14(4), 141-148. https://doi.org/10.1061/(asce)0887-3828(2000)14:4(141)   DOI
33 Livneh, M., Ishai, I. and Livneh, N.A. (1995), "Effect of vertical confinement on dynamic cone penetrometer strength values in pavement and subgrade evaluations", Transport. Res. Rec., 1473, 1-8.
34 Lee, C., Kim, K.S., Woo, W. and Lee, W. (2014), "Soil stiffness gauge (SSG) and dynamic cone penetrometer (DCP) tests for estimating engineering properties of weathered sandy soils in Korea", Eng. Geol., 169, 91-99. https://doi.org/10.1016/j.enggeo.2013.11.010   DOI
35 Lee, J.S., Kim, S.Y., Hong, W.T. and Byun, Y.H. (2019), "Assessing subgrade strength using an instrumented dynamic cone penetrometer", Soils Found., 59(4), 930-941. https://doi.org/10.1016/j.sandf.2019.03.005   DOI
36 Livneh, M. (1989), "Validation of correlations between a number of penetration tests and in situ California bearing ratio tests", Transport. Res. Rec., 1219, 56-67.
37 Mohammadi, S.D., Nikoudel, M.R., Rahimi, H. and Khamehchiyan, M. (2008), "Application of the dynamic cone penetrometer (DCP) for determination of the engineering parameters of sandy soils", Eng. Geol., 101(3-4), 195-203. https://doi.org/10.1016/j.enggeo.2008.05.006   DOI
38 Farghaly, A.A. (2015), "Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds", Smart Struct. Syst., Int. J., 15(5), 1293-1309. https://doi.org/10.12989/sss.2015.15.5.1293   DOI