Browse > Article
http://dx.doi.org/10.12989/sss.2021.27.5.729

Vibration analysis of FG cylindrical shell: Evaluation of Ritz-polynomial mixed with ring terms  

Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Naeem, Muhammad Nawaz (Department of Mathematics, Govt. College University Faisalabad)
Qazaq, Amjad (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Alqahtani, Abdulaziz (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Smart Structures and Systems / v.27, no.5, 2021 , pp. 729-743 More about this Journal
Abstract
Here the Rayleigh - Ritz method has been applied to derive the shell vibration frequency equation. This equation has been formed as an eigenvalue problem form. MATLAB software package has been utilized for extracting shell frequency spectra. Nature of materials used for construction of cylindrical shells also has visible impact on shell vibration characteristics. For isotropic materials, the physical properties are same everywhere, the laminated and functionally graded materials vary from point to point. Here the shell material has been taken as functionally graded material. Moreover, the impact of ring supports around the shell circumferential has been examined for the various positions along the shell axial length. These shells are stiffened by rings in the tangential direction. These ring supports are located at various positions along the axial direction round the shell circumferential direction. These variations have been plotted against the locations of ring supports for three values of exponents of volume fraction law. For three conditions, frequency variations show different behavior with these values of exponent law. The influence of the positions of ring supports for simply supported end conditions is very visible. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down. The comparisons of frequencies have been made for efficiency and robustness for the present numerical procedure.
Keywords
Lagrangian functional; ring supports; volume fraction; FGM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038   DOI
2 Mehar, K. and Panda, S.K. (2018e), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., Int. J., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565   DOI
3 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181   DOI
4 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.- A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005   DOI
5 Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689   DOI
6 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017c), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057   DOI
7 Mehar, K., Panda, S.K. and Patle, B.K. (2017d), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466   DOI
8 Arnold, R.N. and Warburton, G.B. (1949), "Flexural vibrations of the walls of thin cylindrical shells having freely supported ends", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 197(1049), 238-256. http://dx.doi.org/10.1098/rspa.1949.0061   DOI
9 Mehar, K. and Panda, S.K. (2018d), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircr. Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237   DOI
10 Asghar, S., Hussain, M. and Naeem, M. (2019), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E: Low-dimens. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726   DOI
11 Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Natural Fibers, 1-15. https://doi.org/10.1080/15440478.2018.1503129   DOI
12 Goncalves, P.B. and Batista, R.C. (1987), "Frequency response of cylindrical shells partially submerged or filled with liquid", J. Sound Vib., 113(1), 59-70. https://doi.org/10.1016/S0022-460X(87)81340-8   DOI
13 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737. https://doi.org/10.24200/SCI.2017.4525   DOI
14 Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792- 3809. https://doi.org/10.1002/pc.24409   DOI
15 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018d), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X   DOI
16 Gasser, L.F.F. (1987), "Free vibrations on thin cylindrical shells containing liquid", M.S. Thesis, Federal University of Rio de Janerio, peccoppe-ufrj, Rio de Janerio, Portugal. [In Portuguese]
17 Ghobaei-Arani, M., Jabbehdari, S. and Pourmina, M.A. (2018), "An autonomic resource provisioning approach for service-based cloud applications: A hybrid approach", Future Gener. Comput. Syst., 78, 191-210. https://doi.org/10.1016/j.future.2017.02.022   DOI
18 Goncalves, P.B. and Batista, R.C. (1988), "Non-linear vibration analysis of fluid-filled cylindrical shells", J. Sound Vib., 127(1), 133-143. https://doi.org/10.1006/jsvi.2001.4139   DOI
19 Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002   DOI
20 Mehar, K. and Panda, S.K. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266   DOI
21 Moazzez, K., Googarchin, H.S. and Sharifi, S.M.H. (2018), "Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing line-spring model", Thin-Wall. Struct., 125, 63-75. https://doi.org/10.1016/j.tws.2018.01.009   DOI
22 Ramteke, P., Mehar, K., Sharma, N. and Panda, S. (2020a), "Numerical Prediction of Deflection and Stress Responses of Functionally Graded Structure for Grading Patterns (Power-Law, Sigmoid and Exponential) and Variable Porosity (Even/Uneven)", Scientia Iranica.
23 Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Mathe. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x   DOI
24 Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527   DOI
25 Xuebin, L. (2008), "Study on free vibration analysis of circular cylindrical shells using wave propagation", J. Sound Vib., 311, 667-682. https://doi.org/10.1016/j.jsv.2007.09.023   DOI
26 Wuite, J. and Adali, S. (2005), "Deflection and stress behavior of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3-4), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011   DOI
27 Wang, C. and Lai, J.C.S. (2000), "Prediction of natural frequencies of finite length circular cylindrical shells", Appl. Acoust., 59(4), 385-400. https://doi.org/10.1016/S0003-682X(99)00039-0   DOI
28 Wang, C.M., Swaddiwudhipong, S. and Tian, J. (1997), "Ritz method for vibration analysis of cylindrical shells with ring-stiffeners", J. Eng. Mech., 123, 134-143. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(134)   DOI
29 Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7, 399-407.   DOI
30 Xiang, Y., Ma, Y.F., Kitipornchai, S. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9), 1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1   DOI
31 Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62, 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1   DOI
32 Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233   DOI
33 Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., Int. J., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391   DOI
34 Zhang, X.M. (2002), "Frequency analysis of submerged cylindrical shells with the wave propagation approach", J. Mech. Sci., 44, 1259-1273. https://doi.org/10.1016/S0020-7403(02)00059-0   DOI
35 Kareem, M.G. and Majeed, W.I. (2019), "Transient dynamic analysis of laminated shallow spherical shell under low-velocity impact", J. Mater. Res. Technol., 8(6), 5283-5300. https://doi.org/10.1016/j.jmrt.2019.08.050   DOI
36 Galletly, G.D. (1955), "On the in-vacuo vibrations of simply supported, ring-stiffened cylindrical shells", US National Congress of Applied Mechanics. http//www.vacuo-vibrations-supported-ring-stiffened-cylindrical/dp/B0007FTWBQ
37 Jweeg, M.J. and Alazzawy, W.I. (2007), "A suggested analytical solution for laminated closed cylindrical shells using General Third Shell Theory (GTT)", Al-Nahrain J. Eng. Sci., 10(1), 11-26.
38 Jweeg, M.J. and Majeed, W.I. (2020), "Free vibration Analysis solution for laminated truncated conical shells using high orde theory", Proceedings of the 6th Sc Conference of the College of Engineering, University of Baghdad, Volume 3, pp. 208-225.
39 Koizumi, M. (1997), "FGM Activities in Japan", Composites. https://doi.org/10.1016/S1359-8368(96)00016-9   DOI
40 Alazzawy, W.I. (2008), "Static and Dynamic Analysis of Stiffened Plate Used in Machine Tool Column", J. Eng., 14(4), 3099-3111.
41 Alazzawy, W.I. and Jweeg, M.J. (2010), "A study of free vibration and fatigue for cross-ply closed cylindrical shells using General Third shell Theory (GTT)", J. Eng., 16(2), 5170-5184.
42 AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111-122. https://doi.org/10.12989/sss.2020.25.1.111   DOI
43 Amabili, M. (1999), "Vibration of circular tubes and shells filled and partially immersed in dense fluids", J. Sound Vib., 221(4), 567-585. https://doi.org/10.1006/jsvi.1998.2050   DOI
44 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197   DOI
45 Chi, S.H. and Chung, Y.L. (2006b), "Mechanical behavior of functionally graded material plates under transverse load-part II: numerical results", Int. J. Solids Struct., 43, 3657-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010   DOI
46 Chung, H., Turula, P., Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nuclear Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0   DOI
47 Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519   DOI
48 Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.   DOI
49 Sodel, W. (1981), "Vibration of shell and plates", In: Mechanical Engineering Series, New York, USA.
50 Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Eng., 2, 228-236. https://doi.org/10.4236/eng.2010.24033   DOI
51 Jiang, J. and Olson, M.D. (1994), "Vibrational analysis of orthogonally stiffened cylindrical shells using super elements", J. Sound Vib., 173, 73-83. https://doi.org/10.1006/jsvi.1994.1218   DOI
52 Naeem, M.N., Ghamkhar, M., Arshad, S.H. and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J. Mech. Sci. Technol., 27(3), 649-656. https://doi.org/10.1007/s12206-013-0119-6   DOI
53 Chi, S.H. and Chung, Y.L. (2006a), "Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis", Int. J. Solids Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.010   DOI
54 Suresh, S. and Mortensen, A. (1997), "Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour", Int. Mater. Rev., 42, 85-116. https://doi.org/10.1179/imr.1995.40.6.239   DOI
55 Swaddiwudhipong, S., Tian, J. and Wang, C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503   DOI
56 Toulokian, Y.S. (1967), Thermo Physical Properties of High Temperature Solid Materials, New York: Macmillan. https://apps.dtic.mil/dtic/tr/fulltext/u2/649947.pdf
57 Dewangan, H.C., Panda, S.K. and Sharma, N. (2020a), "Experimental Validation of Role of Cut-Out Parameters on Modal Responses of Laminated Composite-A Coupled Fe Approach", Int. J. Appl. Mech., 12(6), 2050068. https://doi.org/10.1142/S1758825120500684   DOI
58 Lam, K.Y. and Loy, C.T. (1998), "Influence of boundary conditions for a thin laminated rotating cylindrical shell", Compos. Struct., 41(3-4), 215-228. https://doi.org/10.1016/S0263-8223(98)00012-9   DOI
59 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197   DOI
60 Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324   DOI
61 Mehar, K. and Panda, S.K. (2016b), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of IOP Conference Series: Materials Science and Engineering, 115(1), 012014.
62 Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., Int. J., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525   DOI
63 Leissa, A.W. (1973), "Vibration of shells". https://ntrs.nasa.gov/search.jsp?R=19730018197
64 Marcel Dekker, Books: https://www.abebooks.com/book-search/title/vibrations-shells-plates/author/soedel-werner/
65 Mehar, K. and Panda, S.K. (2018a), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceedings of IOP Conference Series: Materials Science and Engineering, Vol. 338, No. 1, p. 012017.
66 Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: buckling and post-buckling behavior", Smart Struct. Syst., Int. J., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155   DOI
67 Ansari, R. and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462. https://doi.org/10.7508/IJND.2015.05.002   DOI
68 Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. https://doi.org/10.1007/s00707-006-0438-0   DOI
69 Sharma, C.B., Darvizeh, M. and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8   DOI
70 Amabili, M., Pellicano, F. and Paidoussis, M.P. (1998), "Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid", 12(7), 883-918. https://doi.org/10.1006/jfls.1998.0173   DOI
71 Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787   DOI
72 Sharma, C.B. and Johns, D.J. (1971), "Vibration characteristics of a clamped-free and clamped-ring-stiffened circular cylindrical shell", J. Sound Vib., 14(4), 459-474. https://doi.org/10.1016/0022-460X(71)90575-X   DOI
73 Dewangan, H.C., Sharma, N., Hirwani, C.K. and Panda, S.K. (2020b), "Numerical eigenfrequency and experimental verification of variable cutout (square/rectangular) borne layered glass/epoxy flat/curved panel structure", Mech. Based Des. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2020.1759432   DOI
74 Ramteke, P.M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020b), "Static deflection simulation study of 2D Functionally graded porous structure", Materials Today: Proceedings, 33, 5544-5547. https://doi.org/10.1016/j.matpr.2020.03.537   DOI
75 Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., Int. J., 73(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225   DOI
76 Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", National Aeronautic and Space Administration; for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Va. https://ntrs.nasa.gov/search.jsp?R=19680024266%202020-06-07T18:48:40+00:00Z
77 Sharma, C.B. (1974), "Calculation of natural frequencies of fixed-free circular cylindrical shells", J. Sound Vib., 35(1), 55-76. https://doi.org/10.1016/0022-460X(74)90038-8   DOI
78 Flugge, W. (1962), Stresses in Shells, (2nd Edition), Springer-Verlag, Berlin, Germany.
79 Dong, S.B. (1977), "A block-stodola eigen solution technique for large algebraic systems with non-symmetrical matrices", Int. J. Numer. Methods Eng., 11, 247. https://doi.org/10.1002/nme.1620110204   DOI
80 Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139   DOI
81 Flugge, W. (1967), Stresses in Shells, (2nd Edition), Springer-Verlag, Berlin, Germany. https://www.springer.com/gp/book/9783662010280
82 Forsberg, K. (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Am. Inst. Aeronaut. Astronaut., 2, 182-189. https://arc.aiaa.org/doi/abs/10.2514/6.1964-77   DOI
83 Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., Int. J., 19(1), 33-38. https://doi.org/10.12989/sss.2017.19.1.033   DOI
84 Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., Int. J., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027   DOI
85 Love, A.E.H. (1888), "XVI. The small small free vibrations and deformation of thin elastic shell", Phil. Trans. R. Soc. London, A179, 491-549. https://doi.org/10.1098/rsta.1888.0016   DOI
86 Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5   DOI
87 Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X   DOI
88 Mehar, K. and Panda, S.K. (2018c), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821   DOI